Reg. No.						
----------	--	--	--	--	--	--

Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal Odd Semester, 2013 - 2014 MA939 Functional Analysis Problem Sheet - 3

Answer **ALL** questions.

- 1. Prove that the space ℓ_p for any $1 \leq p < \infty$ is not closed in ℓ_{∞} .
- 2. What is the smallest closed subspace containing c_{00} in ℓ_{∞} ?
- 3. Explain the relations between bounded sets and totally bounded sets of a metric space X. What is the case if $X = \mathbb{K}^n$?
- 4. Prove that $C^k[a, b]$ is a proper dense subspace of $L_p[a, b]$ with $\|.\|_p$ for $1 \le p < \infty$.
- 5. Prove that $C^k[a, b]$ is not Banach with respect to any norm $\|.\|_p$ for $1 \le p \le \infty$ but it is Banach with respect to $\sum_{i=0}^k \|x^{(j)}\|_{\infty}$.
- 6. The space $\mathcal{P}[a, b]$ of all polynomials defined on [a, b] is not Banach with respect to any norm.
- 7. If $X = \mathbb{N}$ with the discrete metric, prove that $C(X) = \ell_{\infty}$.
- 8. For $1 \le p < \infty$, using the convexity of the function $f(t) = t^p$ on $[0, \infty)$, show that ℓ_p is a vector space.
- 9. $C^{\infty}[a, b]$ is not Banach in the induced norm of $C^{k}[a, b]$ (the complete norm as defined above).
- 10. It is given that $C_c(X)$ is not a closed subspace of C(X) so that $C_c(X)$ is not Banach with respect to sup norm. Find a sequence (x_n) in $C_c(X)$ which converges to x in C(X) but $x \notin C_c(X)$.