Reg. No.			
0			

Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal Odd Semester, 2013 - 2014 MA939 Functional Analysis Problem Sheet - 6

Date : 06.08.2013	Last Date of Submission : 07.08.2013
-------------------	--------------------------------------

Answer **ALL** questions.

- 1. Define three-space property. Prove that finite-dimensionality and completeness satisfy three-space prperty.
- 2. If U is compact and V is closed, then prove that U + V is closed. What happens if U is also closed?
- 3. Let $M = \{(x_n) \in c_0 : x_m = mx_{m-1} \text{ for each even } m\}$ and $M = \{(x_n) \in c_0 : x_m = 0 \text{ for each odd } m\}$. Prove that M + N is a proper dense subspace of c_0 (with the sup norm).
- 4. Prove that any finite dimensional subspace of a normed space is closed.
- 5. It is given that $C^1[a, b]$ is Banach with respect to $||x||_1 = ||x||_{\infty} + ||x'||_{\infty}$ for $x \in C^1[a, b]$. Prove that the norm defined by $||x||_1 = |x(a)| + ||x'||_{\infty}$ for for $x \in C^1[a, b]$ is a complete one.
- 6. Let $(X, \|.\|)$ be an infinite dimensional normed space and τ its topology. Show that there are two norms $\|.\|_1$ and $\|.\|_2$ on X such that if τ_1 and τ_2 are the associated topologies for $\|.\|_1$ and $\|.\|_2$, then $\tau_2 \subseteq \tau \subseteq \tau_1, \tau_2 \neq \tau, \tau_1 \neq \tau$. That is, τ_1 is strictly stronger than τ , and τ_2 is strictly weaker than τ .
- 7. Let $1 \leq r . Verify whether <math>\|.\|_p$ and $\|.\|_r$ on c_{00} are equivalent or not.
- 8. Prove or disprove : In a finite dimensional normed space, all norms are equivalent.
- 9. Say true or false : $(C[a, b], \|.\|_p)$ is complete for $1 \le p < \infty$.
- 10. Let X be a metric space and A be a subset of X. Prove or disprove the following :
 - (a) If A is compact, then A is closed.
 - (b) If A is compact, then A is bounded.
 - (c) If A is closed, then A is compact.
 - (d) If A is bounded, then A is compact.