Reg. No.							
----------	--	--	--	--	--	--	--

Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal Odd Semester, 2013 - 2014 MA939 Functional Analysis Problem Sheet - 9

Date : 11.09.2013

Last Date of Submission : 16.12.2013

Answer **ALL** questions.

- 1. Necessary and sufficient conditions for continuous. Let X and Y be normed spaces and $T: X \to Y$ be a linear operator. Prove that the following are equivalent.
 - (a) T is continuous at 0.
 - (b) T is continuous at every $x \in X$.
 - (c) T is uniformly continuous.
 - (d) T is a bounded operator (there exists M > 0 such that $||Tx|| \le M ||x||$ for all $x \in X$.)
 - (e) T is a bounded function on B[0, r] for some r > 0.
 - (f) T sends null sequences in X to null sequences in Y.
 - (g) T sends convergent sequences in X to convergent sequences in Y.
 - (h) T sends Cauchy sequences in X to Cauchy sequences in Y.
 - (i) T sends bounded sequences in X to bounded sequences in Y.
 - (j) The null space of T is closed in X and the linear operator $\widetilde{T}: X/N(T) \to Y$ defined by $\widetilde{T}(x+N(T)) = Tx, x \in X$, is continuous.
- 2. Sufficient conditions for continuous. Let T be a linear operator from a normed space X into a normed space Y. Prove the following statements.
 - (a) If X is Banach and the inverse image of the closed unit ball in Y is closed in X, then T is continuous at 0.
 - (b) If the image of every null sequence is bounded, then the operator is continuous.
 - (c) If $\sum_{n} Tx_{n}$ is a convergent series in Y whenever $\sum_{n} x_{n}$ is an absolutely convergent series in X, then T is continuous.
- 3. Let $T : (\mathbb{R}, \|.\|_1) \to (\mathbb{R}, \|.\|_\infty)$ be a map defined by T(x, y) = (2x + 3y, x y). Compute the operator norm of T, by optimization techniques.
- 4. Show that two complex Banach spaces can be isomorphic as real Banach spaces but they may fail to be isomorphic as complex Banach spaces.
- 5. Prove or disprove. c is isomorphic to c_0 .
- 6. Prove or disprove. c is not isometrically isomorphic to c_0 .