Instructor : P. Sam Johnson

Problem Sheet 6

- 1. Think of a matrix A, as a linear map which takes the *j*th elements of the standard basis of \mathbb{R}^n to the *j*th column C_j . How the column space is nothing other than Im(A)? Explain.
- 2. Let $x = (\alpha, \beta, \gamma)$ be a nonzero vector in \mathbb{R}^3 .
 - (a) Find a basis of $W := x^{\perp}$.
 - (b) Give a pair of equations whose solution set is the line joining the origin and v.
- 3. Show that a vector space V over F has a unique basis iff either d(V) = 0 or d(V) = 1 and |F| = 2.
- 4. Prove or disprove: If A, B and C are pair-wise disjoint subsets of V such that $A \cup B$ and $A \cup C$ are bases of V, then Sp(B) = Sp(C).
- 5. Let x_1, x_2, \ldots, x_n be fixed distinct real numbers.
 - (a) Show that $\ell_1(t), \ell_2(t), \ldots, \ell_n(t)$ form a basis of \mathcal{P}_n , where $\ell_i(t) = \prod_{i \neq j} (t x_j)$. This basis leads to what is known as Lagrange's interpolation formula. If $f(t) \in \mathcal{P}_n$ is written as $\sum_{i=1}^n \alpha_i \ell_i(t)$, show that $\alpha_i = f(x_i)/\ell_i(x_i)$.
 - (b) Show that $\psi_1(t), \psi_2(t), \ldots, \psi_n(t)$ form a basis of \mathcal{P}_n , where $\psi_i(t) = 1$ and $\psi_i(t) = \prod_{j=1}^{i=1} (t x_j)$ for $i = 2, \ldots, n$. This basis leads to what is known as Newton's divided difference formula.
- 6. Extend $A = \{(1, 1, \dots, 1)\}$ to a basis of \mathbb{R}^n .
- 7. Let S and T be subspaces of a vector space V with d(S) = 2, d(T) = 3 and d(V) = 5. Find the minimum and maximum possible values of d(S + T) and show that every (integer) value between these can be attained.
- 8. Show that the distributive law

$$S \cup (T+W) = (S \cup T) + (S \cup W)$$

is false for subspaces. However prove that it holds whenever $S \supseteq T$ or $S \supseteq W$. This latter result is known as the *modular law*.

- 9. The sum of two subspaces S and T is said to be *direct* (or S and T *independent*) if any vector in S + T can be expressed in a unique way as x + y with $x \in S$ and $y \in T$. Prove that the following statements are equivalent.
 - (a) S + T is direct.
 - (b) $S \cup T = \{0\}.$
 - (c) If $x \in S \{0\}$ and $y \in T \{0\}$, then x, y are linearly independent.
 - (d) $0 = x + y, x \in S, y \in T \Rightarrow x = 0$ and y = 0.
 - (e) d(S+T) = d(S) + d(T).

10. Say true or false: A complement of a subspace is unique.