Instructor : P. Sam Johnson

Problem Sheet 5

- 1. Given W_1, W_2 vector subspaces of V, does there exist any smallest vector subspace W_3 containing W_1 and W_2 ?
- 2. Let W be a vector subspace of V. What is w + W if $w \in W$? What is W + W? Is is true that w + W = W if and only if $w \in W$?
- 3. What is the dimension of the set of reals \mathbb{R} over \mathbb{Q} ?
- 4. Say true or false: If x and y are linearly independent vectors in V, then so are x + y and x y.
- 5. Let $T: V \to W$ be linear. Let V^* and W^* be their duals. We define a map $T^*: W^* \to V^*$ as follows. Given $g \in W^*$, $Tg \in V^*$ is given by Tg(v) := g(Tv) for all $v \in V$. Show that T^* is a linear map. It is called the *adjoint* of T.
- 6. True or false? If V, W are vector spaces and $T: V \to W$ is a linear map and $\{v_1, \ldots, v_n\}$ is a linearly independent set of vectors in V, then $\{T(v_i)\}_{i=1}^n$ is linearly independent.
- 7. Let $V = \mathbb{R}^n$ and A be a $n \times n$ matrix. If Ax = 0 has a unique solution then Ax = b has a unique solution for every $b \in \mathbb{R}^n$.
- 8. Can you construct a linear map $T : \mathbb{R}^2 \to \mathbb{R}^4$ such that $\text{Im}(T) = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$?
- 9. Can you construct a linear map $T : \mathbb{R}^2 \to \mathbb{R}^3$ such that $\operatorname{Im}(T) = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$?
- 10. Check whether the following are inner products or not.
 - (a) $\langle z, w \rangle := \operatorname{Re}(z\overline{w})$ on \mathbb{C} .
 - (b) $\langle (x_1, x_2), (y_1, y_2) \rangle := y_1(2x_1 + x_2) + y_2(x_1 + x_2)$ on \mathbb{R}^2 .
 - (c) $\langle A, B \rangle := \operatorname{tr} A B^t$ on $\mathbb{M}(n, \mathbb{R})$. The trace of the matrix A, $\operatorname{tr}(A)$ is the sum of diagonals.
- 11. Prove that two nonzero vectors orthogonal to each other are linearly independent.
- 12. Say true or false. Zero is the only vector is orthogonal to every vector of V.
- 13. Let W_i , i = 1, 2, be vector subspaces of V. Assume that each vector is one of them is orthogonal to all of the other. Then prove that $W_1 \cap W_2 = \{0\}$.
- 14. True or False : The following subsets of \mathbb{R} form subspaces of \mathbb{R} over \mathbb{Q} :
 - (a) \mathbb{Q} , and
 - (b) $\{\alpha + \beta \sqrt{2} + \gamma \sqrt{3} : \alpha, \beta, \gamma \in \mathbb{Q}\}.$

If the above subsets are subspaces, find basis.

15. What is the matrix representation of the conjugation map $z \mapsto \overline{z}$ of \mathbb{C} with respect to the "usual" basis of \mathbb{C} ?