Instructor : P. Sam Johnson

Problem Sheet 4

- 1. Prove or disprove: $Sp(A) \cap Sp(B) \neq \{0\} \implies A \cap B \neq \emptyset$.
- 2. True or False : If $A \subseteq B$ and $\operatorname{Sp}(A) \supseteq B$, then $\operatorname{Sp}(A) = \operatorname{Sp}(B)$.
- 3. Let X be the set of all positive integers. In the vector space \mathbb{R}^X of all real-valued functions on X, what is the span of the set $A = \{f_i : i \ge 1\}$, where f_i is the function in \mathbb{R}^X taking value 1 at x = i and 0 elsewhere? Show that if $f \in Sp(A)$ then the range of f is finite but the converse is not true.
- 4. True or false : In the vector spec \mathbb{R} over the field \mathbb{Q} , the sets $\{1, \sqrt{2}\}, \{\sqrt{2}, \sqrt{3}, \sqrt{6}\}$ and $\{\sqrt{2}, \sqrt{3}, \sqrt{12}\}$ are linearly independent.
- 5. If x and y are linearly independent show that $x + \alpha y$ and $x + \beta y$ are linearly independent whenever $\alpha \neq \beta$.
- 6. Let Sp(A) = S. Then show that no proper subset of A generates S iff A is linearly independent.
- 7. For what values of α are the vectors $(0, 1, \alpha), (\alpha, 1, 0)$ and $(1, \alpha, 1)$ in \mathbb{R}^3 linearly independent.

8. Let $S = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Compute the least positive integer k such that S^k is the zero matrix.

9. Find E^2 , E^8 and E^{-1} if $E = \begin{pmatrix} 1 & 0 \\ 6 & 1 \end{pmatrix}$.

- 10. Let $P_{n \times n}$ be any permutation matrix. Prove that $P_{n \times n}^m = I_{n \times n}$ for some m.
- 11. In each of the following, find precisely which axioms in the definition of a vector space are violated. Take $V = \mathbb{R}^2$ and $F = \mathbb{R}$ throughout
 - (a) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, 0), \quad \alpha(x_1, x_2) = (\alpha x_1, 0)$
 - (b) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \alpha(x_1, x_2) = (\alpha x_1, 0)$
 - (c) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \alpha(x_1, x_2) = (\alpha x_1, 2\alpha x_2)$
 - (d) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \alpha(x_1, x_2) = (\alpha + x_1, \alpha + x_2).$
- 12. True or False : The set of all positive real numbers forms a vector space over \mathbb{R} if the sum of x and y is defined to be the usual product xy and α times x is defined to be x^{α} .
- 13. Let V be a vector space. On $V \times V$, define +, and . as follows:

$$\begin{aligned} &(x_1, y_1) + (x_2, y_2) &= & (x_1 + y_1, x_2 + y_2) \\ &\alpha(x, y) &= & (\alpha x, \alpha y), \alpha \in \mathbb{R}, x, y \in V \end{aligned}$$

Is $V \times V$ a vector space? If not, write down the conditions (axioms) which are violated.

14. Let $X := \{*\}$ be a singleton set and let V be a vector space. Let $W = \{*\} \times V$. Can we turn W into a vector space as follows?

$$\begin{aligned} (*, x_1) + (*, x_2) &= (*, x_1 + x_2), x_1, x_2 \in V \\ \alpha(*, x) &= (*, \alpha x), \alpha \in \mathbb{R}, x \in V. \end{aligned}$$