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We study the concept of orthogonal projection and give an explicit
expression for the orthogonal projector into the column space of a matrix.

Definition

For any set A of vectors in an inner product space V ,
A⊥ := {y ∈ V : y ⊥ for every x ∈ A}.

A⊥ is a subspace of V for any set A ⊆ V .

Constructing an ONB for S⊥ from an ONB of S . Let
{x1, x2, . . . , xk} be any ONB of a subspace S and let
{x1, x2, . . . , xk , xk+1, . . . , xn} be any extension of B to an ONB of V .
Then S⊥ is the space of {xk+1, . . . , xn}.
If S is a subspace of V , then S⊥ is a complement of S ;

d(S⊥) = d(V ) = d(S) and (S⊥)⊥ = S .

Becasue of the reasons (S⊥ is a complement of S and is orthogonal
to S), we call S⊥, the orthogonal complement of S .
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Properties of Orthogonal Complements

If W is a complement of S and is orthogonal to S , then W = S⊥.

The union of an ONB of S and an ONB of W is an ONB of V .

Suppose S1, S2, . . . ,Sk are subspaces which are orthogonal to one
another and S1 + S2 + · · ·+ Sk = V . Then S1 ⊕ S2 ⊕ · · · ⊕ Sk = V .
Now for any fixed i (1 ≤ i ≤ k),

∑
j 6=i Sj is a complement of Si and is

orthogonal to Si , so it is the orthogonal complement of Si .

If S ⊆ T , then T⊥ ⊆ ST .

If S and T are subspaces, then (S + T )⊥ = S⊥ ∩ T⊥ and
(S ∩ T )⊥ = S⊥ + T⊥.

The result S = (S⊥)⊥ is quite powerful and is closed related to a
result known as Farkas lemma which is equivalent to the duality
theorem of linear programming.
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Orthogonal projection into a subspace
Definition

If S is a subspace of V and x ∈ V , the projection of x into S along S⊥ is
called the orthogonal projection of x into S.

Geometrically, the orthogonal projection of x into S is the foot of the
perpendicular drawn from x to S .

Since (S⊥)⊥ = S , it follows that if y is the orthogonal projection of x
into S then x − y is the orthogonal projection of x into S⊥.

Let {x1, x2, . . . , xk} be an ONB of S . Then for any x ∈ V , y defined
by y =

∑k
i=1〈x , xi 〉xi , (y ∈ S) is the orthogonal projection of x into S

; the residual x − y is the orthogonal to each of x1, x2, . . . , xk ,
(x − y ∈ S⊥); x − y is the orthogonal projection of x into S⊥.

The residual of x with respect to an ONB of S does not depend on
the choice of the basis. Residual, is really with respect to the
subspace S .
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Orthogonal projection into a flat

Let W be a flat. Then there is a (unique) subspace S and a vector u (not
unique) in V such that W = u + S . Any x ∈ V , x − u has unique
expression x − u = s + t, s ∈ S , t ∈ S⊥. Hence x = (u + s) + t,
u + s ∈W , t ∈ S⊥. Thus any vector x ∈ V can be written unqiuely as
w + t, where w ∈W and t ∈ S⊥.

The vector w is called the orthogonal projection of x into W .
Geometrically, it is the foot of the perpendicular from x to W .

If P is the orthogonal projector into S , then w = u + P(x − u), where
w ∈W = u + S , and S is a subspace.

Theorem

Let w be the orthogonal projection of x into a flat W . Then
d(x ,W ) = minz∈W ‖x − z‖ is attained at w and only at w.
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Consider Rn and Cn equipped with the canonical inner product. For a real
matrix A, N(A) = R(A)⊥ = C (A⊥)⊥. For a complex matrix A,
N(A) = C (A∗)⊥.

Proof.

x ⊥ C (A∗) ⇐⇒ 〈x ,A∗z〉 for all z

⇐⇒ (A∗z)x = z∗Ax = 0 for all z

⇐⇒ Ax = 0 ⇐⇒ x ∈ N(A).

Definition

Let S be a subspace of F n. The orthogonal projector into S is the n× n
matrix P such that for every x ∈ F n, Px is the orthogonal projection of x
into S.
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An n × n matrix Q is the orthogonal projector if it is the orthogonal
projector into some subspace S of F n.

S = C (Q).

Q is the projector into S along S⊥.

S⊥ = C (I − Q).

I − Q is the projector into S⊥.

TFAE

1 Q is an orthogonal projector.

2 Q∗Q = Q.

3 Q∗ = Q and Q2 = Q.
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Proof.

Q is an ort.proj. ⇐⇒ Qx is the orth.proj. of x into C (Q), ∀ x ∈ F n.

⇐⇒ x = Qx ⊥ C (Q)∀ x ∈ F n.

⇐⇒ 〈Qy , (I − Q)x〉 = 0∀ x y ∈ F n.

⇐⇒ (I − Q)∗ = 0 ⇐⇒ Q∗Q = Q.

Hence (a) ⇐⇒ (c).
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We next obtain an explicit formula for the orthogonal projector into the
column space of an arbitrary matrix.

Theorem

The orthogonal projector PA into C (A) is given by PA = A(A∗A) A∗,
where B denotes a generalized inverse of A.

Proof. page 270

Remark

Page 270

Computation of PA. Page 270
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Transformation which preserves distances are called isometries. Linear
transformations which preserve inner product (and so distances and
angles) are isometries. We study their matrices.

We consider only the canonical inner product in Cn and Rn.

Definition

A unitary matrix is a complex square matrix A such that A∗A = I (is
equivalent to, A∗ = A−1). We know that if a square matrix A has a left
inverse, then A has an inverse, so A∗A = I .
An orthogonal matrix is a real square matrix A such that AAT = I (is
equivalent to, AT = A−1).

(AA∗)ij = 〈Ai∗,A
∗
j∗〉 = 〈Ai∗,Aj∗〉

and (A∗A)ij = 〈A∗j ,A∗i 〉. Hence A is unitary iff the rows as well as the
columns of A from orthonormal bases of F n.
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Unitary Matrices Orthogonal Matrices
Examples : the identity matrix and
all permutation matrices

Examples : the identity matrix and
all permutation matrices

The unitary matrices of order 1 are
e iθ, 0 ≤ θ ≤ 2π.

The orthogonal matrices of order
1 are 1 and −1.

The determinant of an unitary ma-
trix has modulus 1

The determinant of an orthogonal
matrix is 1 or −1

because I = AA∗ because I = AA∗

and 1 = det(AA∗) = |det(A)|2. and 1 = det(AA∗) = det(A)2, so
det(A) = 1, or −1.
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1 If A is unitary, the matrix obtained from A by any permutation of
rows or columns is also unitary.

2 The matrix obtained by multiplying any row or column of a unitary
matrix by a scalar of unit modulus is also unitary.

3 Any 2× 2 orthogonal matrix A is

Aθ =

[
cos θ − sin θ
sin θ cos θ

]
or

[
cos θ sin θ
sin θ − cos θ

]
for some θ.

Proof. Let P and Q be the points in R2 corresponding to the two
columns of A and Q be the angle between the x-axis and OP.

Then length PO = 1, so P = (cos θ, sin θ)T .

Length OQ is also 1 and OQ is perpendicular to OP, so
Q = (cosφ, sinφ)T where φ is (θ + π

2 ) or (θ − π
2 ). Hence A is Aθ or Bθ.
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Definition

An orthogonal matrix is said to be proper or improper according as its
determinant is 1 or −1.
Note that Aθ is proper and Bθ is improper.

Construction of Hermitian-unitary matrix from a vector u ∈ Cn with
‖u‖ = 1.

Let u be any vector in Cn with ‖u‖ = 1 and set A = I − 2uu∗.

Then A is Hermitian and AA∗ = A2 = I − 4uu∗ + 4uu∗uu∗ = I , since
u∗u = I . Thus A is unitary.

If u is real and A is symmetric and orthogonal, then A = I − 2uuT is
symmetric-orthogonal matrix.
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Theorem

Let A be an n × n matrix. TFAE

1 A is unitary.

2 〈Ax ,Ay〉 = 〈x , y〉 for all x , y ∈ Cn (the map x 7→ Ax preserves
angles).

3 ‖Ax‖ = ‖x‖ for all x ∈ Cn (the map x 7→ Ax preserves length).

4 ‖Ax‖ = 1 whenever ‖x‖ = 1 and x ∈ Cn (the map x 7→ Ax leaves the
surface of a sphere with centre at the origin, invariant.

5 ‖Ax − Ay‖ = ‖x − y‖ for all x , y ∈ Cn (the map x 7→ Ax preserves
distance).

6 {Ax1,Ax2, . . . ,Axn} is an orthonormal basis of Cn whenever
{x1, x2, . . . , xn} is an orthonormal basis of Cn.

Further, if A is real, then ‘unitary’ can be replaced by ‘orthogonal’ in (i)
and Cn by Rn in (ii) through (vi).
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Written out if full, (ii) says: if we make a change of variables from
x1, x2, . . . , xn to y1, y2, . . . , yn by y = Ax , where A is orthogonal, then

y2
1 + y2

2 + · · ·+ y2
n = x2

1 + x2
2 + · · ·+ x2

n .

This is what makes orthogonal transformations useful in many subjects.

For example, this is used in Statistics to show that the sample mean and
sample variance are independently distributed if the popoulation is normal.

Let A be a linear map. The map K : x 7→ Ax + c is known as an affine
transformation.
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If A is unitary, then K preserves distances. We prove a strong form of the
converse.

Theorem

Let f be any map (not necessarily affine transformation) from Rn to itself
such that ‖f (x)− f (y)‖ = ‖x − y‖ for all x , y ∈ Rn. Then there exist an
orthogonal matrix A and a vector c ∈ Rn such that f (x) = Ax + c for all
x ∈ Rn.

Proof. Page 276

We have seen that every 2× 2 orthogonal matrix corresponds to either a
rotation or a reflection of the plance depending upon whether it is proper
or improper.

We will prove that every orthogonal matrix of order 3 corresponds to
either a rotation of R3 about a line through the origin or such a rotation
followed by a reflection in the origin, depending upon whether it is proper
or improper.
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Transition matrices and the effect of a change of bases on the
matrix of a linear transformation. Page 277

P. Sam Johnson (NITK) Orthogonal Projector May 26, 2017 17 / 23



Definition

Matrices A and B are unitarily similar to each other if there exists an
unitary matrix P such that B = P−1AP.

Constructing a large class of unitary matrices provided one can
invert a matrix.

Definition

A skew-hermitian matrix is a square matrix S such that S∗ = −S. A
real skew-hermitian matrix is said to be skew-symmetric.
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Let A be a square matrix such that I + A is non-singular. Let
Ã = (I − A)(I + A)−1. Then Ã is unitary iff A is skew-hermitian.

If A is real, Ã is orthogonal iff A is skew-symmetric.

Let A be a square matrix such that I + A is non-singular. Let

Ã = (I − A)(I + A)−1. Then I + Ã is also singular and ˜̃A = A. We will
prove later that if S is skew-hermitian then I + S is non-singular.

Thus S ↔ S̃ is a 1− 1 correspondence between skew-hermitian matrices
and unitary matrices U such that I + U is non-singular.
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How to generate the skew-hermitian matrices? Put arbitrary purely
imaginary numbers on the diagona, arbitrary complex numbers above the
diagonal and then fill the cells below the diagonal by using sij = −s ji .

Now taking S̃ we get all unitary matrices U such that I + U is non-singular.
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Exercises

1 Let A be an n × n matrix. Show that the following statements are
equivalent:

(a) Ax ⊥ Ay iff x ⊥ y ,
(b) A is non-zero scalar times a unitary martix,
(c) the columns of A are orthogonal and have equal norms,
(d) the rows of A are orthogonal and have equal norms.

2 Show that if A is unitary, then C (I − A) and N(I − A) are orthogonal
complements.
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Exercises

3 Show that the set of all n × n orthogonal matrices forms a group
under multiplication. This group is denoted by On. Show that the set
of all proper orthogonal matrices of order n forms a subgroup of On.
This subgroup is denoted by SOn.

4 Show that for an m × n matrix A, ‖Ax‖ = ‖x‖ for all x ∈ Cn iff
A∗A = I . (Such a rectangular matrix is called a semi-unitary matrix.

5 Given u and v in Rn with ‖u‖ = ‖v‖, explain how an orthogonal
matrix C can be obtained so that Cu = v .

6 Let u and x be fixed vectors in Rn. Find the maximum and the
minimum values of (xTCu)2 as C varies over all n × n orthogonal
matrices.
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