sam.nitk.ac.in

Mathematical Methods for Engineers (MA 713) Problem Sheet - 2

Vector Subspaces

- 1. Label the following statements as true or false.
 - (a) If *V* is a vector space and *W* is a subset of *V* that is a vector space, then *W* is a subspace of *V*.
 - (b) The empty set is a subspace of every vector space.
- 2. Determine whether the following sets are subspaces of \mathbb{R}^3 under the operations of addition and scalar multiplication defined on \mathbb{R}^3 . Justify your answer.
 - (a) $W_1 = \left\{ (a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 3a_2 \text{ and } a_3 = -a_2 \right\}$ (b) $W_2 = \left\{ (a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = a_3 + 2 \right\}$ (c) $W_3 = \left\{ (a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1 - 7a_2 + a_3 = 0 \right\}$

(d)
$$W_4 = \left\{ (a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 + 2a_2 - 3a_3 = 1 \right\}$$

(e)
$$W_5 = \left\{ (a_1, a_2, a_3) \in \mathbb{R}^3 : 5a_1^2 - 3a_2^2 + 6a_3^2 = 0 \right\}$$

(f) $W_6 = \left\{ (a_1, a_2, a_3) \in \mathbb{R}^3 : a_1a_2a_3 = 0 \right\}$

3. Is the set
$$W_1 = \{(a_1, a_2, \dots, a_n) \in F^n : a_1 + a_2 + \dots + a_n = 0\}$$
 a subspace of F^n ?

- 4. Is the set $W_2 = \{(a_1, a_2, \dots, a_n) \in F^n : a_1 + a_2 + \dots + a_n = 1\}$ a subspace of F^n ?
- 5. Is the set $W = \{f(x) \in P(F) : f(x) = 0 \text{ or } f(x) \text{ has degree } n\}$ a subspace of P(F) if $n \ge 1$?
- 6. Consider the vector space $P(\mathbb{R})$ over the field \mathbb{R} . Which of the following subsets are subspaces of $P(\mathbb{R})$?
 - (a) the set of all polynomials of degree *n* ;
 - (b) the set of all polynomials of degree less than or equal to *n* ;
 - (c) the set of all polynomials of degree greater than or equal to n;

(d)
$$\left\{ p(x) \in P(\mathbb{R}) : p(0) = 2017 \right\}$$

(e)
$$\{p(x) \in P(\mathbb{R}) : p(0) = 0\}$$
;

- (f) $\{p(x) \in P(\mathbb{R}) : p(1729) = p(1887)\}.$
- 7. Let *S* be a nonempty set and *F* be a field. Prove that for any $s_0 \in S$, $\{f \in \mathcal{F}(S, F) : f(s_0) = 0\}$ is a subspace of $\mathcal{F}(S, F)$.

- 8. Let *S* be a nonempty set and *F* be a field. Let C(S, F) denote the set of all functions $f \in \mathcal{F}(S, F)$ such that f(s) = 0 for all but a finite number of elements of *S*. Prove that C(S, F) is a subspace of $\mathcal{F}(S, F)$.
- 9. Is the set of all differentiable real-valued functions defined on \mathbb{R} a subspace of $C(\mathbb{R})$? Justify your answer.
- 10. Let $C^n(\mathbb{R})$ denote the set of all real-valued functions defined on the real line that have a continuous n^{th} derivative. Prove that $C^n(\mathbb{R})$ is a subspace of $F(\mathbb{R}, \mathbb{R})$.
- 11. Let *V* be a vector space and *W* a subset of *V*. The following are equivalent :
 - (a) *W* is a subspace of *V*;
 - (b) $0 \in W$, and whenever $a \in F$ and $x, y \in W$, then $ax \in W$ and $x + y \in W$;
 - (c) $W \neq \emptyset$, and, whenever $a \in F$ and $x, y \in W$, then $ax \in W$ and $x + y \in W$;
 - (d) $0 \in W$ and $ax + y \in W$ whenever $a \in F$ and $x, y \in W$.
- 12. Let F_1 and F_2 be fields. A function $g \in \mathcal{F}(F_1, F_2)$ is called an **even function** if g(-t) = g(t) for each $t \in F_1$ and is called an **odd function** if g(-t) = -g(t) for each $t \in F_1$. Prove that the set V_e of all even functions in $\mathcal{F}(F_1, F_2)$ and the set V_o of all odd functions in $\mathcal{F}(F_1, F_2)$ are subspaces of $\mathcal{F}(F_1, F_2)$. Also prove that $V_e + V_o = \mathcal{F}(F_1, F_2)$ and $V_e \cup V_o = \{0\}$.

Consider the vector space $\mathcal{F}(\mathbb{C},\mathbb{C})$ over the field \mathbb{C} . Which of the following subsets are subspaces of $\mathcal{F}(\mathbb{C},\mathbb{C})$?

- (a) the set of all functions f such that f(0) = 0;
- (b) the set of all real valued functions;
- (c) the set of all continuous functions.
- 13. Let W_1 and W_2 be subspaces of a vector space V.
 - (a) Prove that $W_1 + W_2$ is a subspace of *V* that contains both W_1 and W_2 .
 - (b) Prove that any subspace of V that contains both W_1 and W_2 must also contain $W_1 + W_2$.
- 14. Show that F^n is the direct sum of the subspaces

$$W_1 = \left\{ (a_1, a_2, \dots, a_n) \in F^n : a_n = 0 \right\}$$

and

$$W_2 = \{(a_1, a_2, \ldots, a_n) \in F^n : a_1 = a_2 = \cdots = a_{n-1} = 0\}.$$

15. Let W_1 denote the set of all polynomials f(x) in P(F) such that in the representation

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

we have $a_i = 0$ whenever *i* is even. Likewise let W_2 denote the set of all polynomials g(x) in P(F) such that in the representation

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0,$$

we have $b_i = 0$ whenever *i* is odd. Prove that $P(F) = W_1 \oplus W_2$.

- 16. Consider the vector space $M_{n \times n}(\mathbb{R})$ over the field *R*. Which of the following subsets are subspaces of $M_{n \times n}(\mathbb{R})$?
 - (a) the set of all matrices whose entries are non-negative ;
 - (b) the set of all invertible matrices ;
 - (c) the set of all symmetric matrices ;

- (d) the set of all skew-symmetric matrices ;
- (e) the set of all upper triangular matrices ;
- (f) the set of all matrices with trace zero.
- 17. In $M_{m \times n}(F)$ define $W_1 = \{A \in M_{m \times n}(F) : A_{ij} = 0 \text{ whenever } i > j\}$ and $W_2 = \{A \in M_{m \times n}(F) : A_{ij} = 0 \text{ whenever } i \le j\}$. Show that $M_{m \times n}(F) = W_1 \oplus W_2$.
- 18. Let *V* denote the vector space consisting of all upper triangular $n \times n$ matrices, and let W_1 denote the subspace of *V* consisting of all diagonal matrices. Show that $V = W_1 \oplus W_2$, where $W_2 = \{A \in V : A_{ij} = 0 \text{ whenever } i \ge j\}$.
- 19. A matrix *M* is called **skew-symmetric** if $M^t = -M$. Clearly, a skew-symmetric matrix is square. Let *F* be a field. Prove that the set W_1 of all skew-symmetric $n \times n$ matrices with entries from *F* is a subspace of $M_{n \times n}(F)$. Now assume that *F* is not of characteristic 2, and let W_2 be the subspace of $M_{n \times n}(F)$ consisting of all symmetric $n \times n$ matrices. Prove that $M_{n \times n}(F) = W_1 \oplus W_2$.
- 20. Let *F* be a field that is not of characteristic 2. Define

$$W_1 = \left\{ A \in M_{n \times n}(F) : A_{ij} = 0 \text{ whenever } i \le j \right\}$$

and W_2 to be the set of all symmetric $n \times n$ matrices with entries from F. Both W_1 and W_2 are subspaces of $M_{n \times n}(F)$. Prove that $M_{n \times n}(F) = W_1 \oplus W_2$.

21. Is the set
$$W_3 = \left\{ (a_1, a_2, a_3) : 2a_1 - 3a_2 + \sqrt{2}a_3 = 0, a_1 - 5a_3 = 0 \right\}$$
 a subspace of F^3 ?

22. Show that the following subsets of \mathbb{R} form subspaces of \mathbb{R} over \mathbb{Q} :

(i)
$$\mathbb{Q}$$

(ii) $\left\{ \alpha + \beta \sqrt{2} + \gamma \sqrt{3} : \alpha, \beta, \gamma \in \mathbb{Q} \right\}$

- 23. In each of the following, find out whether the subsets given form subspaces of the vector space *V*.
 - (a) $V = \mathbb{R}^2$, W_1 = the set of all (x_1, x_2) such that $x_1 \ge 0$ and $x_2 \ge 0$ and W_2 = the set of all (x_1, x_2) such that $x_1 x_2 \ge 0$.
 - (b) $V = \mathcal{F}(\mathbb{R}, \mathbb{R}), W_1 = \{f : f \text{ is monotone}\}, W_2 = \{f : f(2) = (f(5))^2\} \text{ and } W_3 = \{f : f(2) = f(5)\}.$ Note that monotone means either non-decreasing or non-increasing.
 - (c) $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$, V = the set of all those functions whose range is finite (i.e., the function takes finitely many values).
 - (d) $V = \mathcal{F}(X, \mathbb{R})$, where X is the set of all positive integers and W=the set of all f such that the sequence { $f(1), f(2), \ldots$ } converges.

(e)
$$V = P_5(F), W = \{ p \in V : p = 0 \text{ or degree } p \ge 2 \}.$$

(f)
$$V = P(\mathbb{R})$$
 and $W = \{ p \in V : p(5) = 0 \}$.

- (g) $V = P(\mathbb{R})$ and $W = \{ p \in V : p(5) \neq 2 \}.$
- (h) V = the power set of \mathbb{R} , W = the set of all finite subsets of \mathbb{R} .

(i)
$$V = \mathbb{C}^n$$
 over \mathbb{R} , $W = \{(a_1, a_2, \dots, a_n) \in \mathbb{C}^n : a_1 \text{ is real } \}.$

(j)
$$V = \mathbb{F}^n$$
, $W = \{(a_1, a_2, \dots, a_n) \in \mathbb{F}^n : a_2 \text{ is rational } \}.$

24. Let W be the set of all $(a_1, a_2, a_3, a_4, a_5)$ in \mathbb{R}^5 which satisfy

$$2a_1 - a_2 + \frac{3}{5}a_3 - a_4 = 0$$
$$a_1 + \frac{4}{3}a_3 - a_5 = 0$$
$$9a_1 - 3a_2 + 6a_3 - 3a_4 - 3a_5 = 0.$$

Find a finite set of vectors which spans W.

25. Let F be a field and let n be a positive integer $(n \ge 2)$. Let V be the vector space of all $n \times n$ matrices over F.

Which of the following sets of matrices A in V are subspaces of V?

- (a) all invertible A ;
- (b) all non-invertible A;
- (c) all *A* such that AB = BA, where *B* is some fixed matrix in *V*;
- (d) all *A* such that $A^2 = A$.
- 26. Let W_1 and W_2 be subspaces of a vector space V such that $W_1 + W_2 = V$ and $W_1 \cap W_2 = \{0\}$. Prove that for each vector x in V there are unique vectors x_1 in W_1 and x_2 in W_2 such that $x = x_1 + x_2$.
