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Overview

Let A be an m × n matrix and x be an n-dimensional vector.

When A multiplies x , we can think of it as transforming that vector into
a new vector Ax . This happens at every point x of the n-dimensional
space Rn.

The whole space is transformed, or “mapped into,” by the matrix A.

We discuss transformtion of this kind, in general vector space settings.
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Streching and Shrinking : Positive Scaling

We start with four examples of the transformations that come from
matrices. A multiple of the identity matrix, A = cI , streches every vector
by the same factor c . The whole space expands or contracts (or somehow
goes through the origin and out the opposite side, when c is negative).

Positive Scaling
Enlargement / Shrink Scalar Factor k > 0, Centre (0, 0)
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Streching and Shrinking : Negative Scaling

Negative Scaling
Enlargement / Shrink Scalar Factor k < 0, Centre (0, 0)
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Rotation

A rotation matrix turns the whole space around the origin. The following
example turns all vectors in the triangle with vertices A(2, 1),B(2, 3) and
C (3, 1) through 90◦.
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Rotation by 270◦ (step by step) : Figure 1 (step 1)
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Rotation by 270◦ (step by step) : Figure 2 (step 2)
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Rotation by 270◦ (step by step) : Figure 3 (step 3)

P. Sam Johnson (NIT Karnataka) Linear Transformations December 31, 2019 8 / 72



Rotation by 270◦ (step by step) : Figure 4 (step 4)
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Rotation by 270◦ (step by step) : Figure 5 (step 5)
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Rotation by 270◦ (step by step) : Figure 6 (step 6)
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Rotation by 270◦ (step by step) : Figure 7 (step 7)
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Rotation by 270◦ (step by step) : Figure 8 (step 8)
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Rotation by 270◦ (step by step) : Figure 9 (step 9)
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Rotation by 270◦ (step by step) : Figure 10 (step 10)
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Rotation by 270◦ (step by step) : Figure 11 (step 11)
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Rotation by 270◦ (step by step) : Figure 12 (last step)
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Reflection about the line y = x

A reflection matrix transforms every vector into its image on the opposite
side of a mirror. In this example the mirror is the 45◦ line y = x , and a
point (2, 2) is unchanged. A point like (2,−2) is reversed to (−2, 2). On a
combination like (2, 2) + (2,−2) = (4, 0), the matrix leaves one part and
reverses the other part. The reflection matrix is also a permutation matrix!
It is algebraically so simple, sending (x , y) to (y , x).
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Reflection about the line y = −x

Reflection about the line y = −x

P. Sam Johnson (NIT Karnataka) Linear Transformations December 31, 2019 19 / 72



Reflection about x-axis

Reflection about the x-axis
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Reflection about y -axis

Reflection about the y-axis
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Projection

The fourth example is simple in both respects : A projection matrix takes
the whole space onto a lower-dimensional subspace (and therefore fails to
be invertible).

The example transforms each vector (x , y) in the plane to the nearest
point (x , 0) on the horizontal axis. That axis is the column space of A,
and the vertical axis (which projects onto the origin) is the nullspace.
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Everything is not possible with matrices !

It is also important to recognize that matrices cannot do everything, and
some transformations are not possible with matrices:

1. It is impossible to move the origin, since A0 = 0 for every matrix.

2. If the vector x goes to x ′, then 2x must go to 2x ′. In general cx must
go to cx ′, since A(cx) = cA(x).

3. If the vectors x and y go to x ′ and y ′, then their sum x + y must go
to x ′ + y ′, since A(x + y) = Ax + Ay .
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Motivation for defining linear transformation

Transformations that obey the above three rules are called linear
transformations. Those conditions can be combined into a single
requirement: For all numbers c and d and all vector x and y , matrix
multiplication satisfies the rule of linearity: A(cx + dy) + c(Ax) + d(Ay).
Every transformation that meets this requirement is a linear
transformation.

Any matrix leads immediately to a linear transformation. The more
interesting question is in the opposite direction : Does every linear
transformation lead to a matrix? It is now objective to answer that
question (affirmatively, in n dimensions). This theory is the foundation of
an approach to linear algebra.
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Linear map from Rn to Rm

A tranformation need not go from Rn to the same space Rn. It is
absolutely permitted to transform vectors in Rn to vectors in a different
space Rm. That is exactly what is done by m by n matrix!

The original vector x has n components, and the tranformed vector Ax has
m components. The rule of linearity is equally satisfied by rectangular
matrices, so they also product linear transformations.
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Differentiation

The operation of differentiation, A = d/dt, is linear:

Ap =
d

dt
(a0 + a1t + · · ·+ ant

n) = a1 + · · ·+ nant
n−1.

Its nullspace is the one-dimensional space of constant polynomials:
da0/dt = 0.

Its column space is the n-dimensional space Pn−1; the right side of above
is always in that space.

The sum of nullity (= 1) and rank (= n) is the dimension of the original
space Pn.
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Integration

Integration from 0 to t is also linear (it takes Pn to Pn+1):

Ap =

∫ t

0
(a0 + a1t + · · ·+ ant

n)dt = a1 + · · ·+ an
n + 1

tn+1.

This time there is no nullspace (except for the zero vector, as always!) but
integration does not produce all polynomials in Pn+1.

The right side of above has no constant term. Probably the constant
polynomials will be the left nullspace.
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Multiplication by a fixed polynomial

Multiplication by a fixed polynomial like 2 + 3t is linear:

Ap = (2 + 3t)(a0 + a1t + · · ·+ ant
n) = 2a0 + a1t + · · ·+ 3ant

n+1.

Again this transforms Pn to Pn+1, with no nullspace except p = 0.

Of course, most transformations are not linear - for example to square the
polynomial (Ap = p2), or to add 1 (Ap = p + 1), or to keep the positive
coefficients (A(t − t2) = t).

It will be linear transformations, and only those, that lead us back to
matrices.
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Transformation represented by matrices

If we know Ax for each vector in a basis, then we know Ax for each vector
in the entire space.

Next we try a new problem – to find a matrix that represents
differentiation, and a matrix that represents integration.

That can be done as soon as we decide on a basis. For the polynomials of
degree 3 (the space P3 whose dimension is 4) there is a natural choice for
the four basis vectors: p1 = 1, p2 = t, p3 = t2, p4 = t3.
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Transformation represented by matrices

That basis is not unique (it never is), but some choice is necessary and
this is the most convenient. We look to see what differentiation does to
those four basis vectors.

Their derivatives are 0, 1, 2t, 3t2, or
Ap1 = 0,Ap2 = p1,Ap3 = 2p2,Ap4 = 3p3.

Then the matrix corresponding to it would be

A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

This is the “differentiation matrix”.
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Transformation represented by matrices

The derivative of any other combination like p = 2 + t − t2 − t3 is decided
by linearity, and there is nothing new about that - it is the only way to
differentiate. The matrix can differentiate that polynomial:

dp

dt
= Ap →


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0




2
1
−1
−1

 =


1
−2
−3
0

→ 1− 2t − 3t2.

In short, the matrix carries all the essential information. If the basis is
known, and the matrix is known, then the linear transformation is known.
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Transformation represented by matrices

For transformation from a space to itself one basis is enough. A
transformation from one space to another requires a basis for each.

Suppose the vectors x1, . . . , xn are a basis for the space V , and y1, . . . , ym
are basis for W . Then each linear transformation A from V to W is
represented by a matrix.

The jth column is found by applying A to the jth basis vector; the result
Axj is a combination of the y ′s and the coefficients in that combination go
into column j :

Axj = a1jy1 + a2jy2 + · · ·+ amjym.
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Transformation represented by matrices

We do the same for integration. That goes from cubics to quartics,
transforming V = P3 into W = P4, so for W we need a basis.

The natural choice is y1 = 1, y2 = t, y3 = t2, y4 = t3, y5 = t4.

The matrix will be 5 by 4.

Aint =


0 0 0 0
1 0 0 0
0 1

2 0 0
0 0 1

3 0
0 0 0 1

4

 .
This is the “integration matrix”.
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Differentiation and integration as inverse operations

We think of differentiation and integration as inverse operations. Or at
least integration followed by differentiation leads back to the original
function. To make that happen for matrices, we need the differentiation
matrix from quartics down to cubics, which is 4 by 5:

Adiff =


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

 and AdiffAint =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Differentiation is a left-inverse of integration. But rectangular matrices
cannot have two-sided inverses! In the opposite order, it cannot be true
that AintAdiff = I .
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Rotations Q, Projections P , and Reflections H

We began with 90◦ rotations onto the x-axis, and reflections through the
45◦ line. Their matrices were especially simple:

Q =

[
0 −1
1 0

]
(rotation),P =

[
1 0
0 0

]
(projection),H =

[
0 1
1 0

]
(reflection).

Of course the underlying linear transformations of the xy -plane are also
simple. But it seems that rotations through other angles, and projections
onto other lines, and reflections in other mirrors, are almost as easy to
visualize. They are still linear transformations, provided the origin is fixed:
A0 = 0.

They must be represented by matrices. Using the natural basis (1, 0) and
(0, 1), we want to discover what those matrices are.
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Rotation through an angle θ

The first vector (1, 0) goes to (cos θ, sin θ), whose length is still one; it lies
on the “θ-line”.

The second basis vector (0, 1) rotates into (− sin θ, cos θ). Those vectors

go into the columns of the matrix Qθ = P =

[
cos θ − sin θ
sin θ cos θ

]
.

This family of rotations Qθ is a prefect chance to test the correspondence
between transformations and matrices:

1. Does the inverse of Qθ equals Q−θ (rotation backward through θ)?
Yes.

2. Does the square of Qθ equal Q2θ (rotation through a double angle)?
Yes.

3. What is the product of Qθ and Qφ (rotation through θ and φ)?
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Linear Transformation

We now discuss transformtion of this kind, in general vector space settings.

Definition 1.

Let V and W be vector spaces over the same field F . A linear
transformation from V into W is a function T from V into W such that

T (cα + β) = c(Tα) + Tβ

for all α and β in V and all scalars c in F .

Example 2.

If V is any vector space, the identity transformation I defined by
Iα = α, is a linear transformation from V into V .

The zero transformation 0, defined by 0α = 0, is a linear transformation
from V into V .

P. Sam Johnson (NIT Karnataka) Linear Transformations December 31, 2019 37 / 72



Differentiation Transformation

Example 3.

Let F be a field and let V be the space of polynomial functions f from F
into F , given by f (x) = c0 + c1x + · · ·+ ckx

k . Let

(Df )(x) = c1 + 2c2x + · · ·+ kckx
k−1.

Then D is a linear transformation from V into V , called the
differentiation transformation.

Example 4.

Let A be a fixed m × n matrix with entries in the field F . The function T
defined by T (X ) = AX (where X is in F n×1) is a linear transformation
from F n×1 into Fm×1.

The function U defined by U(α) = αA (where α is an m-tuple) is a linear
transformation from Fm into F n.
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Linear Transformation – Examples

Example 5.

Let P be a fixed m×m matrix with entries in the field F and Q be a fixed
n × n matrix over F . Define a function T from the space Fm×n into itself
by

T (A) = PAQ.

Then T is a linear transformation from Fm×n into Fm×n.

Example 6 (Integration Transformation).

Let R be the field of real numbers and let V be the space of all functions
from R and R which are continuous. Define T by

(Tf )(x) =

∫ x

0
f (t) dt.

Then T is a linear transformation from V into V . The function Tf is not
only continuous but has a continuous first derivative.
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Linear Transformation

Linear transformation preserves linear combinations. That is, if
α1, α2, . . . , αn are vectors in V , and c1, c2, . . . , cn are scalars, then

T (c1α1 + c2α2 + · · ·+ cnαn) = c1T (α1) + c2T (α2) + · · ·+ cnT (αn).

In a calculus course, one would probably call a function linear if its
graph is a straight line.

Suppose V is the vector space R. A linear transformation from V into V
is then a particular type of real-valued function on the real line R.

A linear transformation from R into R, will be a function from R into R,
the graph of which is a straight line passing through the origin.
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Linear Transformation

If T is a linear transformation from V into W , then

(a) T (0) = 0.

(b) the range space of T , denoted by R(T ), is a subspace of W .

R(T ) =
{
β ∈W : β = Tα, for some α ∈ V

}
.

(c) the set of all vectors α in V such that Tα = 0, is called the null
space of T , denoted by N(T ).

N(T ) =
{
α ∈ V : Tα = 0

}
is another interesting subspace associated with the linear
transformations T .
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Linear Transformations

Theorem 7.

Let V be a finite-dimensional vector spce over the field F and let
{α1, α2, . . . , αn} be an ordered basis for V .

Let W be a vector space over the same field F and let β1, β2, . . . , βn by
any vectors (not necessarily distinct) in W .

Then there is precisely one linear transformation T from V into W such
that

Tαj = βj , j = 1, 2, . . . , n.

If V and W are non-zero vector spaces, there are many functions from V
into W . Theorem (7) helps to underscore the fact that the functions
which are linear are extremely useful.
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Linear Transformations

Let T be a linear transformation from the m−tuple space Fm into the
n-tuple space F n. Theorem (7) tells us that T is uniquely determined by
the sequence of vectors β1, β2, . . . , βm where

βi = Tei i = 1, 2, . . . ,m.

In short, T is uniquely determined by the images of the standard basis
vectors.

The determination is

α = (x1, x2, . . . , xm)

Tα = x1β1 + x2β2 + · · ·+ xmβm
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Linear Transformations

If B is the m × n matrix which has row vectors β1, β2, . . . , βm, this says
that

Tα = αB.

In other words, if βi = (Bi1,Bi2, . . . ,Bin), then

T (x1, x2, . . . , xn) = [x1, x2, . . . , xm]

B11 · · · B1n
...

...
Bm1 · · · Bmn

 .
This is a very explicit description of the linear transformation.

Exercise 8.

Find the unique linear transformation from R2 into R3 such that

T (1, 2) = (3, 2, 1) and T (3, 4) = (6, 5, 4).
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Linear Transformations

Remarks :

We shall not pursue the particular description Tα = αB because it
has the matrix B on the right of the vector α, and that can lead to
some confusion.

The example helps to show that one can give an explicit and
reasonably simple description of all linear transformations from Fm

into F n.
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Rank and Nullity

Definition 9.

Let V and W be vector spaces over the field F and let T be a linear
transformation from V into W . If V is finite-dimensional, the rank of T
is the dimension of R(T ), and the nullity of T is the dimension of N(T ).

The following is one of the most important results in linear algebra, called
rank-nullity theorem.

Theorem 10 (Rank-Nullity Theorem).

Let V and W be vector spaces over the field F and let T be a linear
transformation from V into W . Suppose that V is finite-dimensional.
Then

rank (T ) + nullity (T ) = dim V .
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Row and Column Ranks of a Matrix

Theorem 11.

If A is an m × n matrix with entries in the field F , then

row rank (A) = column rank (A).

The proof of Theorem (11) depends upon explicit calculations concerning
systems of linear equations.

There is a more conceptual proof which does not rely on such calculations.
We shall discuss such a proof later.
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Exercises

Exercises 12.

1. Which of the following functions T from R2 into R2 are linear
transformations?

(i) T (x1, x2) = (1 + x1, x2) ;
(ii) T (x1, x2) = (x2, x1) ;
(iii) T (x1, x2) = (x2

1 , x2) ;
(iv) T (x1, x2) = (sin x1, x2) ;
(v) T (x1, x2) = (x1 − x2, 0).

2. Find the range, rank, null space, and nullity for the zero
transformation and the identity transformation on a finite-dimensional
space V .

3. Describe the range and the null spaces for the differentiation
transformation (discussed earlier). Do the same for the integration
transformation.
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Exercises

Exercises 13.

1. Suppose we have the following

α1 = (1,−1), β1 = (1, 0)

α2 = (2,−1), β2 = (0, 1)

α3 = (−3, 2), β3 = (1, 1).

Is there a linear transformation T from R2 and R2 such that
Tα1 = βi for i = 1, 2 and 3?

2. Describe explicitly the linear transformation T from F 2 into F 2 such
that Te1 = (a, b),Te2 = (c , d).

3. Describle explicitly a linear transformation from R3 into R3 which has
as its range the subspace spanned by (1, 0,−1) and (1, 2, 2).
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Exercises

Exercises 14.

1. Let F be a subfield of the complex numbers and let T be the function
from F 2 into F 2 defined by

T (x1, x2, x3) = (x1 − x2 + 2x3, 2x1 + x2,−x1 − 2x2 + 2x3).

(i) Verify that T is a linear transformation.
(ii) If (a, b, c) is a vector in F 2, what are the conditions on a, b, and c that

the vector be in the range of T? What is the rank of T?
(iii) What are the conditions on a, b, and c that (a, b, c) be in null space of

T? What is the nullity of T?

2. Let V be the vector space of all n × n matrices over the field F , and
let B be a fixed n × n matrix. If

T (A) = AB − BA

verify that T is a linear transformation from V into V .
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Exercises

Exercises 15.

1. Let V be the set of all complex numbers regarded as a vector space
over the field of real numbers (usual operations). Find a function
from V into V which is a linear transformation on the above vector
space, but which is not a linear transformation on C, i.e., which is not
complex linear.

2. Let V be the space of n × 1 matrices over F and let W be the space
of m × 1 matrices over F . Let A be a fixed m × n matrix over F and
let T be the linear transformation from V into W defined by

T (X ) = AX .

Prove that T is the zero transformation if and only if A is the zero
matrix.
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Exercises

Exercises 16.

1. Leet V be an n-dimensional vector space over the field F and let T
be a linear transformation from V into V such that the range and
null space of T are identical. Prove tht n is even. (Can you give an
example of such a linear transformation T?)

2. Let V be a vector space and T a linear transformation from V into
V . Prove the the following two statements about T are equivalent.

(i) The intersection of the range of T and the null space of T is the zero
subspace of V .

(ii) If T (Tα) = 0, then Tα = 0.
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The Algebra of Linear Transformations

The set of linear transformations from V into W , inherits a natural vector
space structure.

The set of linear transformations from a space V into itself has even
more algebraic structure, because ordinary composition of functions
provides a “multiplication” of such transformations.
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The Algebra of Linear Transformations

Theorem 17.

Let V and W be vector spaces over the field F . Let T and U be linear
transformations from V into W . The function (T + U) defined by

(T + U)(α) = Tα + Uα

is a linear transformation from V into W . If c is any element of F , the
function (cT ) defined by

(cT )(α) = c(Tα)

is a linear transfrormation from V into W . The set of all linear
transformations from V into W , together with the addition and scalar
multiplication defined above, is a vector space over the field F .
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The Algebra of Linear Transformations

Remark :

If one defined sum and scalar multiple as we did above, then the set of all
functions from V into W becomes a vector space over the field F .

This has nothing to do with the fact that V is a vector space, only that V
is a non-empty set.

When V is a vector space we can define a linear transformation from V
into W , and Theorem (17) says that the linear transformations are a
subspace of the space of all functions from V into W .

We denote the space of linear transformations from V into W by L(V ,W ).

Reminder : L(V ,W ) is defined only when V and W are vector spaces
over the same field.
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The Algebra of Linear Transformations

Theorem 18.

Let V be an n-dimensional vector space over the field F , and let W be an
m-dimensional vector space over F . Then the space L(V ,W ) is
finite-dimensional and has dimension mn.

Theorem 19.

Let V ,W and Z be vector spaces over the field F . Let T be a linear
transformation from V into W and U a linear transformation from W into
Z . Then the composed function UT defined by

(UT )(α) = U(T (α))

is a linear transformation from V into Z .
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The Algebra of Linear Transformations

We are now concerned with linear transformation of a vector space into
itself. Since we would so often have to write ‘T is a linear transformation
from V into V ,’ we shall replace this with ‘T is a linear operator on V .’

Definition 20.

If V is a vector space over the field F , a linear operator on V is a linear
transformation from V into V .

In the case of Theorem (19) when V = W = Z , we see that the
composition UT is again a linear operator on V . Thus the space L(U,V )
has a “multiplication” defined on it by composition.

In this case the operator TU is also defined, and in general UT 6= TU. If
T is a linear operator on V , then we can compose T with T , denoted by
T 2 = TT , and in general T n = T · · ·T (n times) n = 1, 2, 3, . . .. We
define T 0 = T if T 6= 0.
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The Algebra of Linear Transformations

Lemma 21.

Let V be a vector space over the field F ; let U,T1 and T2 be linear
operators on V ; let c be an element of F .

(i) IU = UI = U ;

(ii) U(T1 + T2) = UT1 + UT2; T1U + T2U ;

(iii) c(UT1) = (cU)T1 = U(cT1).

Lemma (21) and Theorem (19) tell us that the vector space L(V ,V ),
together with the composition operation, is what is known as a linear
algebra with identity.
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The Algebra of Linear Transformations

Example 22.

If A is an m × n matrix with entries in F , we have the linear
transformation T defined by T (X ) = AX , from F n×1 into Fm×1. If B is a
p ×m matrix, we have the linear transformation U from Fm×1 into F p×1

defined by U(Y ) = BY . The composition UT is easily described :

(UT )(X ) = U(T (X ))

= U(AX )

= B(AX )

= (BA)X .

Thus UT is ‘left multiplication by the product matrix BA.’
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Example 23.

Let F be a field and V the vector space of all polynomial functions from F
into F . Let D be the differentiation operator and let T be the linear
operator ‘multiplication by x ’ :

(Tf )(x) = xf (x).

Then DT 6= TD but DT − TD = I , the identity operator.
Even though the ‘multiplication’ we have on L(V ,V ) is not commutative,
it is nicely related to the vector space operations of L(V ,V ).
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Exercise 24.

Let B = {α1, α2, . . . , αn} be an ordered basis for a vector space V .
Consider the linear operators Ep,q

Ep,q(αi ) = δiqαp.

(i) Prove that these n2 linear operators form a basis for the space of
linear operators on V .

(ii) Let T be a linear operator on V . If Aj = [Tαj ]B = [A1,A2, . . . ,An],
then prove that

T =
∑
p

∑
q

ApqE
p,q.

(iii) If U =
∑

r

∑
s BrsE

r ,s is another linear operator on V , then prove
that the effect of composing T and U is to multiply the matrices A
and B.
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Definition 25.

Let V and W be vector spaces over the field F . Let T be a linear
transformation from V into W . The function T from V into W is called
invertible if there exists a function U from W into V such that UT is the
identity function on V (T has a left-inverse) and TU is the identity
function on W (T has a right-inverse).

If T is invertible, the function U is unique and is denoted by T−1.

Exercise 26.

T is invertible iff

(1) T is one-to-one ( Tα = Tβ implies α = β)

(2) T is onto (the range of T is all of W ).

P. Sam Johnson (NIT Karnataka) Linear Transformations December 31, 2019 62 / 72



The Algebra of Linear Transformations

Theorem 27.

Let V and W be vector spaces over the field F and let T be a linear
transformation from V into W . If T is invertible, then the inverse function
T−1 is a linear transformation from W onto V .

Exercise 28.

Let T and U be invertible linear transformations from V onto W and from
W onto Z respectively. Then prove that UT is invertible and

(UT )−1 = T−1U−1.

[Hint : It is enough to verify that T−1U−1 is both a left and a right
inverse for UT .]
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Definition 29.

A linear transformation T is non-singular if Tγ = 0 implies γ = 0, that
is, if the null space of T is {0}.

Evidently, T is one-to-one iff T is non-singular.

The extension of this remark is that non-singular linear transformations are
those which preserve linear transformations.

Theorem 30.

Let T be a linear transformation from V into W . Then T is non-singular
if and only if T carries each linearly independent subset of V onto a
linearly independent subset of W .
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Let F be a subfield of the complex numbers and V be the space of
polynomial functions over F . Consider the differentiation operator D and
the “multiplication by x” operator T :

(Tf )(x) = xf (x).

1. V is not finite-dimensional.

2. Since D sends all constants into 0, D is singular.

3. R(D) = V ; it is possible to define a right inverse of D.

4. The indefinite operator E defined by

E (c0 + c1x + · · ·+ cnx
n) = c0x +

1

2
x2 + · · ·+ 1

n + 1
cnx

n+1

is a linear operator on V and DE = I . The indefinite integral
operator is a right inverse of differentiation operator.
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5. On the other hand, ED 6= I because ED sends the constants into 0.

6. N(T ) = V ; it is possible to define a left inverse of T .

7. If U is the operation “remove the constant term” and divide by x

U(c0 + c1x + · · ·+ cnx
n) = c1 + c2x + · · ·+ cnx

n11

then U is a linear operator on V and UT = I .

8. But TU 6= I , since every function in the range of TU is in the range of
T , which is the space of polynomial functions f such that f (0) = 0.

9. This example illustrates that a linear transformation may be
non-singular (one-to-one) without being onto, or may be onto
without being non-singular (one-to-one). But this cannot happen
when dimensions of V and W are same.

P. Sam Johnson (NIT Karnataka) Linear Transformations December 31, 2019 66 / 72



The Algebra of Linear Transformations

Theorem 31.

Let V and W be finite-dimensional vector spaces over the field F such
that dim V = dim W . If T is a linear transformation from V into W , the
following are equivalent :

(i) T is invertible.

(ii) T is non-singular.

(iii) T is onto, that is, the rnage of T is W .

The set of invertible operators on a space V with the operation of
composition, is a group.
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Exercises

Exercises 32.

1. Let T and U be the linear operators on R2 defined by
T (x1, x2) = (x2, x2) U(x1, x2) = (x1, 0).

(i) How would you describe T and U geometrically ?
(ii) Give rules like the ones defining T and U for each of the

transformations (U + T ),UT ,TU,T 2,U2.

2. Let T be the (unique) linear operator on C2 for which

Te1 = (1, 0, i), Te2 = (0, 1, 1), Te3 = (i , 1, 0).

Is T invertible?

3. Let T be the linear operator on R3 defined by

T (x1, x2, x3) = (3x1, x1 − 2x2, 2x1 + x1 + x3).

Is T invertible? If so, find a rule T−1 like the one which defines T .
Prove that (T 2 − I )(T − 3I ) = 0.
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Exercises

Exercises 33.

1. Let C2×2 be the complex vector space of 2× 2 matrices with complex

entries. Let B =

[
1 −1
−4 4

]
and let T be the linear operator on C2×2

defined by T (A) = BA. What is the rank of T ? Can you describe
T 2?

2. Let T be a linear transformation from R2 into R2, and let U be a
linear transformation from R2 into R2. Prove that the transformation
UT is not invertible. Generalize the theorem.

3. Find two linear operators T and U on R2 such that TU = 0 but
UT 6= 0.

4. Let V be a vector space over the field F and T a linear operator on
V . If T 2 = 0, what can you say about the relation of the range of T
to the null space of T? Give an example of a linear operator T on R2

such that T 2 = 0 but T 6= 0.
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Exercises

Exercises 34.

1. Let T be a linear operator on the finite-dimensional space V .
Suppose there is a linear operator U on V such that TU = I . Prove
that T is invertible and U = T−1. Give an example which shows that
this is false when V is not finite-dimensional.
[Hint : Let T = D, the differentiation operator on the space of
polynomial functions.]

2. Let A be an m × n matrix with entries in F and let T be the linear
transformation from F n×1 into Fm×1 defined by T (X ) = AX . Show
that if m < n it may happen that T is onto without being
non-singular. Similarly, show that if m > n we may have T
non-singular but not onto.
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Exercises

Exercises 35.

1. Let V be a finite-dimensional vector space and let T be a linear
operator on V . Suppose that rank (T 2) = rank (T ). Prove that the
range and null space of T are disjoint, i.e., have only the zero vector
in common.

2. Let p,m, and n be positive integers and F a field. Let V be the space
of m × n matrices over F and W the space of p × n matrices over F .
Let B be a fixed p ×m matrix and let T be the linear transformation
from V into W defined by T (A) = BA. Prove that T is invertible if
and only if p = m and B is an invertible m ×m matrix.
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