Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal Numerical Analysis - MA 704 Problem Sheet 9

Dr. P. Sam Johnson (nitksam@gmail.com)

http://sam.nitk.ac.in/

- 1. Apply Euler method to the following initial value problem choosing h = 0.2. y' = x + y, y(0) = 0. Compute y(0.2) and improve the solution by applying Euler modified method.
- 2. Given $y' = x + y^2$, y(0) = 1. Runge Kutta method of order 4 is used to find an approximate value of y at x = 0.1 using steplength h = 0.1. The following values of k's are computed $k_1 = 0.10000$, $k_2 = 0.1152$. Compute y(0.1).
- 3. Given $y' = x y^2$ and the following values of *x* and *y*

x	0.0	0.2	0.4	0.6
y	0.0000	0.0200	0.0795	0.1762

Apply Milnes Predictor. Corrector method to find the solution at x = 0.8

4. Given $y' = \frac{1}{2}xy$ and the following values of *x* and *y*

x	0.0	0.1	0.2	0.3
y	1.0000	1.0025	1.0101	1.0228

Determine y(0.4) usin Adams Bashforth formula. Improve the solution using Adam-Moulton formula.

- 5. Given $y'' = x^3y' + y$, y(0) = 1, y'(0) = 1/2. Write down the equivalent set of two first order equations. Apply Taylor series method of order 3, to detemine y at x = 0.2 using h = 0.2.
- 6. Apply Dalquist method y'' y = x, y(0) = 1, y'(0) = 2, h = 0.1 to detemine y(0.2).
- 1. $I = \int_{1}^{3} \frac{dx}{x}$ is evaluated by trapezoidal rule with 8 strips. Estimate the error in the value of *I*.
- 2. The following are the values of $I = \int_{1.8}^{3.4} e^x dx$ obtained by applying Trapezoidal rule.

h	0.2	0.4	0.8
Ι	23.9944	24.2328	25.1768

Improve the value of *I* using the method of extapolation.

- 3. Evaluate $\int_0^1 x dx$ by Gauss formula with abscissas and weights corresponding to n = 2 ($\pm x_i = 0.57735, w_i = 1, i = 1, 2$)
- 4. Evaluate $\int_0^1 \int_0^1 (x+y) dx dy$ using Simpson's 1/3 rule with h = k = 0.5.
- 5. Give y' = 3x + 0.5, y(0) = 1.0, find y(0.1) using Taylor series of order 4 with h = 0.1.
- 6. Apply Runge-Kutta method of order 2 to evaluate y(0.5) given $y' = x + y^2$, y(0) = 1.0 taking h = 0.5.
- 7. Given $5xy' + y^2 2 = 0$, y(4.0) = 1.0, y(4.1) = 1.009, y(4.2) = 1.0097, y(4.3)1.0143. Apply Milnes Predictor formula to evaluate y(4.4).
- 8. Given y'' = xy, y(0) = 0, y'(0) = 1.0. Reduce the equation to a system of first order initial value problems.