Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal Numerical Analysis - MA 704 Problem Sheet 8

Dr. P. Sam Johnson (nitksam@gmail.com) http://sam.nitk.ac.in/

1. Using the Richardson's extrapolation limit, find $y'(0.05)$ to the function

$$
y = -\frac{1}{x}
$$

with $h = 0.0128, 0.0064, 0.0032$. Use the formula $y'(x) \approx \frac{y(x+h)-y(x-h)}{2h}$ $\frac{-y(x-n)}{2h}$

2. From the following data, estimate the value of $\int_1^5 \log x dx$, using Simpson's 1/3 rule. Also obtain the value of *h* so that the value of the integral will be accurate upto five decimal places.

- 3. Using Adams-Moulton predictor-corrector method find the solution of the initial value problem at $x =$ 0.8 given $y' = y - x^2$, $y(0) = 1.0000y(0.2) = 1.21859$, $y(0.4) = 1.46813$. Use Runge-Kutta method of order 4 to compute $y(0.6)$.
- 4. Solve $y'' + xy = 0$, $y(0) = 1$, $y'(0) = 0$, using Numerov method Use Taylor series method of order 4 to compute the missing values.
- 5. Given $u_{xx} + u_{yy} = x^2 1$, $|x| \le 1$, $|y| \le 1$ with $u = 0$ on the boundary of the square. Formulate the nine point difference scheme with mesh size $h = 0.5$ in both directs.
- 6. Derive the Crank Nicolson formula to solve $u_t = u_{xx}$. Use the method to find the numerical solution of the equation after one time step subject to the initial condition $u(x, 0) = 1, 0 < x < 1$ and the boundary conditions $u(0, t) = u(1, t) = 0, t > 0$. Write the difference scheme to compute the solution by taking $h = 1/4$ and $k = 1/32$.
- 7. Solve the wave equation $u_{tt} = u_{xx}$, $0 \le x \le 1$, subject to the initial conditions $u(x,0) = x^2$, $u_t(x,0) = 1$ and the boundary conditions $u(0,t) = 0$, $u(1,t) = 1 + t$, $t > 0$ by taking $h = k = 0.2$. Compute the solution for the first time step.
- 8. Obtain the cubic spline approximation in the interval (2,3) for the function given below.

- 9. (a) Suppose that the function $f(x)$ is defined for the $(n + 1)$ distinct points x_0, x_1, \ldots, x_n which are not necessarily equidistant. Suppose that *f*(*x*) is represented by an *n*th degree polynomial. Obtain an expression for the derivative of $f(x)$ at any tabulated point. Also obtain the expression for the error of approximation of the derivative at the tabulated point.
	- (b) The values of $f(x) = \sqrt{x}$ are given in the following table. Use the data to estimate $f'(0.6)$

- 10. Given $y' = -5y + 3z$, $y(0) = 2$, $z' = -3y 5z$, $z(0) = 2$. Apply Runge-Kutta method of order 4, to compute the solution of the system at $x = 0.1$ with step length $h = 0.1$.
- 11. Given $y'' y = x$, $y(0)$, $y'(0) = -2$. Apply Numerov method to compute the value of *y* at $x = 0.2$ with step length $h = 0.2$.
- 12. Write down the finite difference equations to solve the mixed boundary value problem for the Poisson equation $\nabla^2 u = 2(x^2 + y^2)$ in the region bounded by the lines $x = 0, y = 0, x = 3$ and $y = 3$ for the boundary conditions $u = 0$ on $x = 0$, $y = 0$

$$
u_x = 6y^2
$$
 on $x = 3u = 9x^2$ on $y = 3$

Take $h = k = 1$ and use the five point formula.

- 13. (a) Derive the Crank-Nicolson formula to solve the heat conduction equation $u_t = u_{xx}$.
	- (b) Apply the above formula to the above equation subject to the initial conditions $u(x, 0) = \sin \pi x$, $0 \leq$ $x \le 1$ and the boundary conditions $u(0, t) = u(1, t) = 0$. Choose $h = 1/3$, $k = 1/36$ and compute the solution at time level 1.
- 14. Find the solution of the vibrating string problem $u_{tt} = u_{xx}$ under the conditions

$$
u(x, 0) = x2 \n ut(x, 0) = 2x \n ux(0, t) = 2t \n u(1, t) = (1 + t)2
$$

with $h = 1/3$, $k = 1/6$ for two time levels.