Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal Numerical Analysis - MA 704 Problem Sheet 8

Dr. P. Sam Johnson (nitksam@gmail.com)

http://sam.nitk.ac.in/

1. Using the Richardson's extrapolation limit, find y'(0.05) to the function

$$y = -\frac{1}{x}$$

with h = 0.0128, 0.0064, 0.0032. Use the formula $y'(x) \approx \frac{y(x+h)-y(x-h)}{2h}$.

2. From the following data, estimate the value of $\int_{1}^{5} \log x dx$, using Simpson's 1/3 rule. Also obtain the value of *h* so that the value of the integral will be accurate up to five decimal places.

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
$\log x$	0.0000	0.4055	0.6931	0.9163	1.0986	1.2528	1.3863	1.5041	1.6094

- 3. Using Adams-Moulton predictor-corrector method find the solution of the initial value problem at x = 0.8 given $y' = y x^2$, y(0) = 1.0000y(0.2) = 1.21859, y(0.4) = 1.46813. Use Runge-Kutta method of order 4 to compute y(0.6).
- 4. Solve y'' + xy = 0, y(0) = 1, y'(0) = 0, using Numerov method Use Taylor series method of order 4 to compute the missing values.
- 5. Given $u_{xx} + u_{yy} = x^2 1$, $|x| \le 1$, $|y| \le 1$ with u = 0 on the boundary of the square. Formulate the nine point difference scheme with mesh size h = 0.5 in both directs.
- 6. Derive the Crank Nicolson formula to solve $u_t = u_{xx}$. Use the method to find the numerical solution of the equation after one time step subject to the initial condition u(x,0) = 1, 0 < x < 1 and the boundary conditions $u(0,t) = u(1,t) = 0, t \ge 0$. Write the difference scheme to compute the solution by taking h = 1/4 and k = 1/32.
- 7. Solve the wave equation $u_{tt} = u_{xx}$, $0 \le x \le 1$, subject to the initial conditions $u(x, 0) = x^2$, $u_t(x, 0) = 1$ and the boundary conditions u(0, t) = 0, u(1, t) = 1 + t, t > 0 by taking h = k = 0.2. Compute the solution for the first time step.
- 8. Obtain the cubic spline approximation in the interval (2,3) for the function given below.

x	1	2	3	4
y	1	5	11	8

- 9. (a) Suppose that the function f(x) is defined for the (n + 1) distinct points x_0, x_1, \ldots, x_n which are not necessarily equidistant. Suppose that f(x) is represented by an *n*th degree polynomial. Obtain an expression for the derivative of f(x) at any tabulated point. Also obtain the expression for the error of approximation of the derivative at the tabulated point.
 - (b) The values of $f(x) = \sqrt{x}$ are given in the following table. Use the data to estimate f'(0.6)

x	0.5	0.6	1.0
f(x)	0.70711	0.77460	1.00000

- 10. Given y' = -5y + 3z, y(0) = 2, z' = -3y 5z, z(0) = 2. Apply Runge-Kutta method of order 4, to compute the solution of the system at x = 0.1 with step length h = 0.1.
- 11. Given y'' y = x, y(0), y'(0) = -2. Apply Numerov method to compute the value of *y* at x = 0.2 with step length h = 0.2.
- 12. Write down the finite difference equations to solve the mixed boundary value problem for the Poisson equation $\nabla^2 u = 2(x^2 + y^2)$ in the region bounded by the lines x = 0, y = 0, x = 3 and y = 3 for the boundary conditions u = 0 on x = 0, y = 0

$$u_x = 6y^2$$
 on $x = 3u = 9x^2$ on $y = 3$

Take h = k = 1 and use the five point formula.

- 13. (a) Derive the Crank-Nicolson formula to solve the heat conduction equation $u_t = u_{xx}$.
 - (b) Apply the above formula to the above equation subject to the initial conditions $u(x,0) = \sin \pi x, 0 \le x \le 1$ and the boundary conditions u(0,t) = u(1,t) = 0. Choose h = 1/3, k = 1/36 and compute the solution at time level 1.
- 14. Find the solution of the vibrating string problem $u_{tt} = u_{xx}$ under the conditions

$$u(x,0) = x^{2}$$

$$u_{t}(x,0) = 2x$$

$$u_{x}(0,t) = 2t$$

$$u(1,t) = (1+t)^{2}$$

with h = 1/3, k = 1/6 for two time levels.