Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal Numerical Analysis - MA 704 Problem Sheet 7

Dr. P. Sam Johnson (nitksam@gmail.com)

http://sam.nitk.ac.in/

1. The following values of function are given.

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8
f(x)	1.543	1.668	1.811	1.971	2.151	2.352	2.577	2.828	3.107

- (a) Find $\int_{1}^{1.8} f(x) dx$ using the trapezoidal rule with (i) h = 0.1, (ii) h = 0.2, (iii) h = 0.4
- (b) Estimate the error in the computed value in each case.
- (c) Extrapolate the individual answers to get estimates of improved accuracy using Romberg integration.
- 2. Compute $\int_0^1 \frac{dx}{\sqrt{x^4+1}}$ by Gauss quadrature formula, given the following data.

Values of <i>x</i>	Weighting factor
0.0	0.88888889
± 0.77459667	0.55555555

3. (a) Using Adam-Bashforth predictor corrector method, obtain the solution of $\frac{dy}{dx} = x - y^2$ at x = 0.8 correct to 3 decimal places given the values:

x	0	0.2	0.4	0.6	
y	0	0.0200	0.0795	0.1762	

- (b) Using Runge-Kutta method of order 4, compute y(0.1) given $\frac{d^2y}{dx^2} + 2x\left(\frac{dy}{dx}\right) 4y = 0$ subject to $y = 0.2, \frac{dy}{dx} = 0.5$ at x = 0.
- 4. (a) Derive the Standard five-point formula for the Laplace equation.
 - (b) Solve

$$u_{xx} + u_{yy} = 0 \quad \text{in } 0 < x < 1, 0 < y < 1$$

$$u(x, 1) = 0$$

$$u(0, y) = 0$$

$$u(1, y) = 9(y - y^2), u(x, 0) = 9(x - x^2)$$

with $h = k = \frac{1}{3}$.

5. Derive the Crank-Nicholson scheme and hence solve $u_t = u_{xx}$ subject to

$$u(x,0) = \sin \pi x, 0 \le x \le 1, u(0,t) = u(1,t) = 0, t \ge 0$$

with $h = \frac{1}{4}$ for two time levels. Choosing $k = \frac{1}{32}$.

- 6. (a) Solve the wave equation $u_{tt} = u_{xx}$, $0 \le x \le 1$, for $0 \le t \le 0.4$ with the boundary conditions u(0,t) = u(1,t) = 0, assuming initial deflection $f(x) = 1 \cos 2\pi x$ and initial velocity is zero and choosing h = k = 0.2.
 - (b) Solve the following boundary value problem using Galerkin method $u'' + u = -x, 0 \le x \le 1$ with u(0) = u(1) = 0 with the approximate solution $w(x) = x(1-x)(a_1 + a_2x)$.