Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal Numerical Analysis - MA 704 Problem Sheet 6

Dr. P. Sam Johnson (nitksam@gmail.com)

- http://sam.nitk.ac.in/
- 1. Use the data of the following table to find the integral from x = 1.6 to x = 3.4 and estimate the error of integration using trapezoidal rule. The data are for $f(x) = e^x$.

x	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8
f(x)	4.953	6.050	7.389	9.025	11.023	13.464	16.445	20.086	24.533	29.964	36.598	44.701

2. Evaluate

$$\int_0^2 e^x dx$$

using trapezoidal rule using 1, 2, 4 and 8 subintervals. Extapolate to the limit using Romberg integration.

3. Using Romberg's integration method, evaluate

$$\int_0^1 \frac{dx}{1+x}$$

correct to 3 decimal places.

4. Use Romberg integration (successive extrapolation with *h* halved each time) to evaluate

$$\int_1^2 \frac{dx}{x}.$$

Carry six decimals and continue until no change in the fifth place occurs. Compare to the analytical value

$$\log 2 = 0.6935.$$

5. Compute the integral

$$I = \int_5^{12} \frac{dx}{x}$$

using three term Gaussian formula.

6. Evaluate the value of

$$\int_{1}^{2} e^{x} dx$$

by Gaussian method with n = 3.

7. Compute

$$\int_0^1 \frac{dx}{\sqrt{x^4 + 1}}$$

by Gauss's method, taking n = 5.