Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal Numerical Analysis - MA 704 Problem Sheet 3

Dr. P. Sam Johnson (nitksam@gmail.com)

http://sam.nitk.ac.in/

- 1. By Bairstow's method, solve the equation $x^4 + 5x^3 + 3x^2 5x 9 = 0$ starting with u = 3 and v = -5. Carry out 3 iterations.
- 2. Using Bairstow's method, determine a quadratic factor $x^4 5x^3 + 20x^2 40x + 60 = 0$. Start with u = 1 and v = 1 and carry out 3 iterations.
- 3. By Bairstow's method, solve $x^4 8x^3 + 39x^2 62x + 50 = 0$. Start with u = 0 = v and carry out three iterations.
- 4. Using Graeffie root squaring method, solve the following equations (squaring 3 times).
 - (a) $x^3 5x^2 17x + 20 = 0$
 - (b) $x^3 x 1 = 0$
 - (c) $32x^3 6x 1 = 0$
 - (d) $x^4 + x^3 6x^2 14x 12 = 0.$
- 5. Find the unique polynomial P(x) of degree 2 or less such that P(1) = 1, P(3) = 27, P(4) = 64 by using Lagrange interpolation formula. Evaluate P(1.5).
- 6. Compute f(3) from the following table using Lagrange formula.

x	0	1	2	4	5	6
f(x)	1	14	15	5	6	19

7. Apply Hermite interpolation and estimate $l_n(2.7)$ from the following data

x_i	2.0	2.5	3.0
$l_n(x_i)$	0.693147	0.916291	1.098612
$\frac{1}{x_i}$	0.500000	0.400000	0.333333

Also determine the bound for the error of approximation.

8. Construct the Hermite interpolating polynomial of degree 7 to the following data. Hence estimate f(1).

x_i	-2	0	3	4
$f(x_i)$	-63	1	82	513
$f'(x_i)$	16	0	189	768

9. Estimate f(1.2) for the function $f(x) = e^{-2x}$ by constructing Hermite interpolating polynomial corresponding to the following data.

x_i	0.0	1.0	2.0
$f(x_i)$	1.0	0.135335	0.018316
$f'(x_i)$	-2.0	270671	-0.36631

10. Values of the function $f(x) = e^x$ are given in the following table at x = 0, 0.5 and 1.0. Obtain a bound on the error of the estimate of Hermite polynomial $H_5(0.75)$ and compare with the actual error.