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Limit of a Function

A function f defined on a set X of real numbers has the limit L at c,
written

lim
x→c

f (x) = L,

if, given any real number ε > 0, there exists a real number δ > 0 such that
|f (x)− L| < ε, whenever x ∈ X and |x − c | < δ.
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Continuous Function

Let f be a function defined on a set X of real numbers and c ∈ X . Then f
is continuous at c if

lim
x→c

f (x) = f (c).

The function f is continuous on the set X if it is continuous at each
number in X .

The set of all continuous functions on X is denoted by C (X ).
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Example of a Discontinuous Function
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Convergent Sequence

Let (xn)∞n=1 be an infinite sequence of real or complex numbers. The
sequence (xn)∞n=1 has the limit L (converges to L) if, for any ε > 0, there
exists a positive number N(ε) such that |xn − L| < ε, whenever n > N(ε).

The notation limn→∞ xn = L, or xn → L as n→∞, means that the
sequence (xn)∞n=1 converges to L.
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Graph of a Convergent Sequence
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Continuity Theorem for Convergent Sequences

If f is a function defined on a set X of real numbers and L ∈ X , then the
following statements are equivalent:

1 f is continuous at L;
2 If (xn)∞n=1 is any sequence in X converging to L, then

limx→∞ f (xn) = f (L).
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All the functions we will consider when discussing numerical methods will
be assumed to be continuous since this is a minimal requirement for
predictable behavior. Functions that are not continuous can skip over
points of interest, which can cause difficulties when attempting to
approximate a solution to a problem.

More sophisticated assumptions about a function generally lead to better
approximation results. For example, a function with a smooth graph will
normally behave more predictably than one with numerous jagged
features. The smoothness condition relies on the concept of the derivative.
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Differentiable Functions

Let f be a function defined in an open interval containing x0. The
function f is differentiable at x0 if

f ′(x0) = lim
x→x0

f (x)− f (x0)

x − x0

exists. The number f ′(x0) is called the derivative of f at x0. A function
that has a derivative at each number in a set X is differentiable on X .
Example
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The derivative of f at x0 is the slope of the tangent line to the graph of f
at (x0, f (x0)), as shown in the following figure.
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Theorem

If the function f is differentiable at x0, then f is continuous at x0.

The set of all functions that have n continuous derivatives on X is denoted
by Cn(X ), and the set of functions that have derivatives of all orders on X
is denoted by C∞(X ).

Polynomial, rational, trigonometric, exponential, and logarithmic functions
are in C∞(X ), where X consists of all numbers for which the functions are
defined.

The next certain mathematical results are of fundamental importance is
deriving methods for error estimation. We state them, without proof.
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Extreme Value Theorem

Let f be a continuous function on the interval [a, b]. Let
M = supa≤x≤b f (x) and M = infa≤x≤b f (x). Then there are points c1, c2
in [a, b] such that m = f (c1) ≤ f (x) ≤ f (c2) = M, for all x ∈ [a, b]. In
addition, if f is differentiable on (a, b), then the numbers c1 and c2 occur
either at the endpoints of [a, b] or where f ′ is zero.
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Mean Value Theorem

Let f be continuous on [a, b] and differentiable in (a, b). Then there is at

least on point c ∈ (a, b) such that f ′(c) = f (b)−f (a)
b−a .
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Theorem (Rolle’s Theorem)

Let f be continuous on [a, b] and differentiable in (a, b). If f (a) = f (b),
then there is at least on point c ∈ (a, b) such that f ′(c) = 0.

Theorem (Generalized Rolle’s Theorem)

Let f be continuous on [a, b] and n times differentiable in (a, b). If f (x) is
zero at the n + 1 distinct numbers c0, c1, . . . , cn in [a, b], then a number c
in (a, b) exists with f (n)(c) = 0.
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Integral Mean Value Theorem

Let f (x) be continuous on [a, b], and let w(x) be nonnegative and
integrable on [a, b]. Then∫ b

a
f (x)w(x)dx = f (ξ)

∫ b

a
w(x)dx ,

for some ξ ∈ [a, b].
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Intermediate Value Theorem

Let f be a continuous function on [a, b] and K is any number between
f (a) and f (b), then there exists a number c in (a, b) for which f (c) = K .

The Intermediate Value Theorem is used to determine when solutions to
certain problems exist.
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