Computational Linear Algebra - MA 703 Problem Sheet 9

- 1. Show that if $A \in \mathbb{R}^{m \times n}$ has rank p , then there exists an $X \in \mathbb{R}^{m \times p}$ and a $Y \in \mathbb{R}^{n \times p}$ such that $A = XY^T$, where $rank(X)=rank(Y)=p$.
- 2. Suppose $A(\alpha) \in \mathbb{R}^{m \times r}$ and $B(\alpha) \in \mathbb{R}^{r \times n}$ are matrices whose entries are differentiable functions of the scalar *α*. Show

$$
\frac{d}{d\alpha}[A(\alpha)B(\alpha)] = \left[\frac{d}{d\alpha}A(\alpha)\right]B(\alpha) + A(\alpha)\left[\frac{d}{d\alpha}B(\alpha)\right].
$$

3. Suppose *A*(*α*) ∈ **R***n*×*ⁿ* has entries that are differentiable functions of the scalar *α*. Assuming *A*(*α*) is always nonsingular, show

$$
\left[\frac{d}{d\alpha}A(\alpha)^{-1}\right] = -A(\alpha)^{-1}\left[\frac{d}{d\alpha}A(\alpha)\right]A(\alpha)^{-1}.
$$

- 4. Suppose $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ and that $\phi(x) = \frac{1}{2}x^T Ax x^T b$. Show that the gradient ϕ is given by $\nabla \phi(x) = \frac{1}{2}(A^T + A)x - b.$
- 5. Assume that both *A* and $A + uv^T$ are nonsingular where $A \in \mathbb{R}^{n \times n}$ and $u, v \in \mathbb{R}$. Show that if *x* solves $(A + uv^T)x = b$, then it also solves a perturbed right hand side problem of the form $Ax = b + \alpha u$. Give an expression for *α* in terms of *A*, *u*, and *v*.
- 6. Show that if $x \in \mathbb{R}^n$, then $\lim_{p \to \infty} ||x||_p = ||x||_{\infty}$.
- 7. Prove the Cauchy-Schwartz inequality by considering the inequality

$$
0 \leq (ax + by)^T(ax + by)
$$

for suitable scalars *a* and *b*.

- 8. Verify that $\|\cdot\|_1$, $\|\cdot\|_2$, and $\|\cdot\|_{\infty}$ are vector norms.
- 9. For $x \in \mathbb{R}^n$ verify the following inequalities. When is equality achieved in each result?
	- (a) $||x||_2 \le ||x||_1 \le$ √ \overline{n} ||x||₂
	- (b) $||x||_{∞} \le ||x||_2 \le$ √ \overline{n} ||x||∞
	- (c) $||x||_{\infty} \le ||x||_1 \le n||x||_{\infty}$.
- 10. Show that in \mathbb{R}^n , $x^{(i)} \to x$ if and only if $x_k^{(i)} \to x_k$ for $k = 1 : n$.
- 11. Show that any vector norm on **R***ⁿ* is uniformly continuous by verifying the inequality

$$
\Big| \|x\| - \|y\| \Big| \le \|x - y\|.
$$

12. Let $\|\cdot\|$ be a vector norm on \mathbb{R}^m and assume $A \in \mathbb{R}^{m \times n}$. Show that if rank $(A)=n$, then $\|x\|_A = \|Ax\|$ is a vector norm on **R***ⁿ* .

- 13. Let *x* and *y* be in \mathbb{R}^n and define $\psi : \mathbb{R} \to \mathbb{R}$ by $\psi(\alpha) = ||x \alpha y||_2$. Show that ψ is minimized when $\alpha = x^T y / y^T y$.
- 14. (a) Verify that $||x||_p = (|x_1|^p + \cdots + |x_n|^p)^{\frac{1}{p}}$ is a vector norm on \mathbb{C}^n .
	- (b) Show that if $x \in \mathbb{C}^n$ then $||x||_p \le c(||\text{Re}(x)||_p + ||\text{Im}(x)||_p)$.
	- (c) Find a constant c_n such that $c_n(\|\text{Re}(x)\|_2 + \|\text{Im}(x)\|_2) \leq \|x\|_2$ for all $x \in \mathbb{C}^n$.
- 15. Prove or disprove:

$$
v \in \mathbb{R}^n \Rightarrow ||v||_1 ||v||_{\infty} \le \frac{1+\sqrt{n}}{2} ||v||_2.
$$

- 16. Show $||AB||_p \le ||A||_p ||B||_p$ where $1 \le p \le ∞$.
- 17. Let *B* be any submatrix of *A*. Show that $||B||_p \le ||A||_p$.
- 18. Show that if $D = \text{diag}(\mu_1 \dots, \mu_k) \in \mathbb{R}^{m \times n}$ with $k = \min\{m, n\}$, then $||D||_p = \max |\mu_i|$.
- 19. For $A \in \mathbb{R}^{m \times n}$ verify the following inequalities. Here $\|.\|_F$ refers the Frobenius norm.
	- (a) $||Ax||_2 \le ||A||_F \le$ √ \overline{n} || A ||₂
	- (b) max_{*i*,*j*} $|a_{ij}| \le ||A||_2 \le$ √ \overline{mn} max_{*i*,*j*} | a_{ij} |

(c)
$$
||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|
$$

- (d) $||A||_{\infty} = \max_{1 \leq j \leq m} \sum_{j=1}^{n} |a_{ij}|$
- (e) $\frac{1}{\sqrt{2}}$ $\frac{1}{n}$ ||*A*||₂ ≤ ||*A*||₂ ≤ √ \overline{m} ∥A∥∞ √
- (f) $\frac{1}{\sqrt{4}}$ $\frac{1}{m}$ || A || $_1 \leq$ || A || $_2 \leq$ \overline{n} || A ||₁.
- 20. Show that if $0 \neq s \in \mathbb{R}^n$ and $E \in \mathbb{R}^{n \times n}$, then

$$
\left\| E \left(I - \frac{ss^T}{s^T s} \right) \right\|_F^2 = \| E \|^2_F - \frac{\| E_s \|^2_2}{s^T s}.
$$

- 21. Suppose $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$. Show that if $E = uv^T$ then $||E||_F = ||E||_2 = ||u||_2 ||v||_2$ and that $||E||_{\infty} \leq ||u||_{\infty} ||v||_1.$
- 22. Suppose $A \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^m$, and $0 \neq s \in \mathbb{R}^n$. Show that

$$
E = (y - As)s^T/s^Ts
$$

has the smallest 2-norm of all $m \times n$ matrices *E* that satisfy $(A + E)s = y$.