Computational Linear Algebra - MA 703 Problem Sheet 8

- 1. Suppose $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^r$ are given. Give a saxpy algorithm for computing the first column of $M = (A - x_1 I) \cdots (A - x_r I).$
- 2. In the conventional 2×2 matrix multiplication $C = AB$, there are eight multiplication :

 $a_{11}b_{11}, a_{11}b_{12}, a_{21}b_{11}, a_{21}b_{12}, a_{12}b_{21}, a_{12}b_{22}, a_{22}b_{21}$ and $a_{22}b_{22}$.

Make a table that indicates the order that these multiplications are performed for the *ijk*, *jik*, *kij*, *ikj*, *jki* and *kji* matrix multiply algorithms.

- 3. Give an algorithm for computing $C = (xy^T)^k$ where *x* and *y* are *n*-vectors.
- 4. Specify an algorithm for computing $(XY^T)^k$ where $X, Y \in \mathbb{R}^{n \times 2}$.
- 5. Formulate an outer product algorithm for the update $C = AB^T + C$ where $A \in \mathbb{R}^{m \times r}$, $B \in \mathbb{R}^{n \times r}$, and $C \in \mathbb{R}^{m \times n}$.
- 6. Suppose we have real $n \times n$ matrices *C*, *D*, *E* and *F*. Show how to compute real $n \times n$ matrices *A* and *B* with just three real $n \times n$ matrix multiplications so that $(A + iB) = (C + iD)(E + iF)$. (Hint: Compute $W = (C + D)(E - F)$.)
- 7. Give an algorithm that overwrites A with A^2 where $A \in \mathbb{R}^{n \times n}$ is
	- (a) upper triangular and
	- (b) square.

Strive for a minimum workspace in each case.

- 8. Suppose $A \in \mathbb{R}^{n \times n}$ is upper Hessenberg and that scalars $\lambda_1,\ldots,\lambda_r$ are given. Give a saxpy algorithm for computing the first column of $M = (A - \lambda_1 I) \cdots (A - \lambda_r I)$.
- 9. Give a column saxpy algorithm for the $n \times n$ matrix multiplication problem $C = AB$ where A is upper triangular and *B* is lower triangular.
- 10. Extend "**Band Gaxpy**" algorithm so that it can handle rectangular band matrices. Be sure to describe the underlying data structure.
- 11. $A \in \mathbb{R}^{n \times n}$ is **Hermitian** if $A^H = A$. If $A = B + iC$, then it is easy to show that $B^T = B$ and $C^T = -C$. Suppose we represent *A* in an array *A.herm* with the property that *A.herm*(*i*, *j*) houses b_{ij} if $i \geq j$ and c_{ij} if $i > j$. Using the data structure write a matrix-vector multiply function that computes $Re(z)$ and Im(*z*) from $Re(x)$ and Im(*x*) so that $z = Ax$.
- 12. Suppose $X \in \mathbb{R}^{n \times p}$ and $A \in \mathbb{R}^{n \times n}$, with *A* symmetric and stored by diagonal. Give an algorithm that computes $Y = X^T A X$ and stores the result by diagonal. Use separate arrays for A and Y .
- 13. Suppose $a \in \mathbb{R}^n$ is given and that $A \in \mathbb{R}^{n \times n}$ has the property that $a_{ij} = a_{|i-j|+1}$. Give an algorithm that overwrites *y* with $Ax + y$ where $x, y \in \mathbb{R}^n$ are given.
- 14. Suppose $a \in \mathbb{R}^n$ is given and that $A \in \mathbb{R}^{n \times n}$ has the property that $a_{ij} = a_{((i+j-1) \mod n)+1}$. Give an algorithm that overwrites *y* with $Ax + y$ where $x, y \in \mathbb{R}^n$ are given.
- 15. Develop a compact store-by-diagonal scheme for unsymmetric band matrices and write the corresponding gaxpy algorithm.
- 16. Suppose p and q are n-vectors and that $A=(a_{ij})$ is defined by $a_{ij}=a_{ji}=p_iq_j$ for $1\leq i\leq j\leq n$. How many flops are required to compute $y = Ax$ where $x \in \mathbb{R}^n$ is given?
- 17. Prove that if

$$
A = \left[\begin{array}{ccc} A_{11} & \cdots & A_{1r} \\ \vdots & \ddots & \vdots \\ A_{q1} & \cdots & A_{qr} \end{array} \right]
$$

is a blocking of the matrix *A*, then

$$
A^T = \left[\begin{array}{ccc} A_{11}^T & \cdots & A_{q1}^T \\ \vdots & \ddots & \vdots \\ A_{1r}^T & \cdots & A_{qr}^T \end{array} \right].
$$

18. Suppose *n* is even and define the following function from \mathbb{R}^n and \mathbb{R} :

$$
f(x) = x(1:2:n)^{T}x(2:n) = \sum_{i=1}^{n/2} x_{2i-1}x_{2i}
$$

(a) Show that if $x, y \in \mathbb{R}^n$ then

$$
x^T y = \sum_{i=1}^{n/2} (x_{2i-1} + y_{2i})(x_{2i} + y_{2i-1}) - f(x) - f(y)
$$

(b) Now consider the $n \times n$ matrix multiplication $C = AB$. Give an algorithm for computing this product that requires *n* ³/2 multiplies once *f* is applied to the rows of *A* and the columns of *B*.

- 19. Consider the matrix product $D = ABC$ where $A \in \mathbb{R}^{m \times r}$, $B \in \mathbb{R}^{r \times n}$ and $C \in \mathbb{R}^{n \times q}$. Assume that all the matrices are strored by column and that the time required to execute a unit-stride saxpy operation of length *k* is of the form $t(k) = (L + k)\mu$ where *L* is a constant and μ is the cycle time. Based on this model, when is it more economical to compute *D* as $D = (AB)C$ instead of as $D = A(BC)$? Assume that all matrix multiple are done using the *jki*, (gaxpy) algorithm.
- 20. What is the total time spent in *jki* variant on the saxpy operations assuming that all the matrices are stored by column and that the time required to execute a unit-stride saxpy operation of length *k* is of the form $t(k) = (L + k)\mu$ where *L* is a constant and μ is the cycle time? Specialize the algorithm so that it efficiently handles the case when *A* and *B* are $n \times n$ and upper triangular. Does it follow that the triangular implementation is six times fastes as the flop count suggets?
- 21. Give an algorithm for computing $C = A^TBA$ where A and B are $n \times n$ and B is symmetric. Arrays should be accessed in unit stride fashion within all innermost loops.