Computational Linear Algebra - MA 703 Problem Sheet 7

- 1. Say true or false with justification: Let *A* be a matrix with real entries. Then the set of all eigenvalues of *A* is always nonempty.
- 2. Find the matrix associated with the quadratic form $p(x, y, z) = 2x^2 7y^2 + 3z^2 2xy yz$.
- 3. If *A* is a real symmetric matrix, then prove that the eigenvectors corresponding to distinct eigenvalues are pairwise orthogonal.
- 4. What are the eigenvalues of the rank one matrix $[1 \ 2 \ 1]^T [1 \ 1 \ 1]$?

5. If
$$A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$
, then find the followings :

- (a) the eigenvalues and the eigenvectors of A
- (b) find the matrix *P* such that $P^{-1}AP$ is a diagonal matrix (diagonalization of *A*), and
- (c) compute A^n for each positive integer n.
- 6. If the eigen values of a 3×3 matrix *B* are 0, 1, 2, then find the followings :
 - (a) the rank of *B*
 - (b) the dimension of nullspace of *B*
 - (c) the determinant of $B^T B$
 - (d) the trace (the sum of diagonals) of $(B + B^T)$, and
 - (e) the eigenvalues of $(B + I)^{-1}$.
- 7. Let *A*, *B*, *C* be $n \times n$ matrices. Assume that *C* is invertible and that $A^T = C^{-1}BC$. Which conclusion follows?
 - (a) *A* and *B* have the same eigenvalues. eigenvalues of *B*.
 - (b) *B* and *C* have the same eigenvalues.
 - (c) The eigenvalues of A are the negatives of the (d) A^T and C have the same eigenvalues.
- 8. If 0 is an eigenvalue of the $n \times n$ matrix *A*, which conclusion is not justified?
 - (a) *A* is the 0-matrix. (c) *A* has a nonzero null space (or kernel).
 - (b) *A* is not invertible. (d) The rankk of *A* is less than *n*.
- 9. Let *A* be a matrix with real entries. Which of the following is true?
 - (a) The set of all eigenvalues of *A* (the spectrum of *A*) is always nonempty.
 - (b) If A^{-1} exists, the eigenvalues of A are real.
- (d) If *A* is symmetric also, then the eigenvectors corresponding to eigenvalues are pairewise orthogonal.

(c) *A* is always diagonalizable.

10. Let $P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$, $D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$. Which gives A^k ?	
(a) $\begin{bmatrix} 2 \cdot 5^k - 3^k & 5^k - 3^k \\ 2 \cdot 3^k - 2 \cdot 5^k & 2 \cdot 3^k - 5^k \end{bmatrix}$	(c) $\begin{bmatrix} 5^k & 0\\ 0 & 3^k \end{bmatrix}$
(b) $\begin{bmatrix} 2 \cdot 5^k - 3^k & 2 \cdot 5^k - c \cdot 3^k \\ 3^k - 5^k & -2 \cdot 3^k - 5^k \end{bmatrix}$	(d) $\begin{bmatrix} 5^k & 5^k \\ -3^k & -2 \cdot 3^k \end{bmatrix}$

11. Let A be a matrix (with real entries). Suppose that A has a complex eigenvalue λ . What conclusion can be drawn?

complex.

solution, x = 0.

- (a) A is upper triangular.
- (b) *A* is not diagonalizable.
- (c) *A* is not invertible.

12. If the columns of *P* are eigenvectors of *A*, what conclusion can be drawn?

- (a) *PA* is a diagonal matrix.
- (b) *AP* equals *P* times a digonal matrix.
- (c) *P* is invertible and PAP^{-1} is diagonal.

(d) All eigenvectors of A corresponding to λ are

(d) *P* is invertible and $P^{-1}AP$ is diagonal.

(d) The equation (A - B)x = 0 has only the zero

- 13. Let *A* and *B* be square matrices such that AB = I. Given only this information about *A* and *B*, which of these is an unjustified conclusion?
 - (a) 0 is not an eigenvalue of *B*.
 - (b) BA = AB.
 - (c) Det(A) = 1/Det(B).

14. If $A = PDP^{-1}$, where *D* is diagonal and *P* is invertible, then

- (a) *A* and *P* have the same eigenvalues. (c) *A* is invertible.
- (b) *A* and *D* have the same characteristic polynomial. (d) *D* is invertible.

15. If a 3 × 3 matrix *A* has the characteristic equation $(x - 1)(x^2 - 4x + 3) = 0$, which conculsion is valid?

- (a) *A* is diagonalizable. (c) *A* is invertible.
 - (b) *A* is noninvertible. (d) A is symmetric.
- 16. What are the eigenvalues of the rank one matrix $[1 2 1]^T [1 1 1]$?