Computational Linear Algebra - MA 703 Problem Sheet 3

1. Assume the plate shown in the figure represents a cross section of a metal beam with negligible heat flow in the direction perpendicular to the plate. Let T_1 , T_2 , T_3 , T_4 denote the temperature at the four interior nodes 1, 2, 3 and 4 of the mesh in the figure. The temperature at a node is equal to the average of the four nearest nodes (left, right, above and below). Find T_1 , T_2 , T_3 and T_4 .

- 2. Let P_3 denote the set of cubic polynomials. For each real x, let S_x denote the cubic polynomials having x as a root. For what values of x, S_x is a subspace of P_3 ?
- 3. Give two 2 × 2 matrices *A* and *B* such that rank(A) = rank(B), but $rank(A^2) \neq rank(B^2)$.
- 4. Define linearly independent set. Give an example in \mathbb{R} .
- 5. Construct a 4×4 matrix whose null space and range space are same. How about the same for 5×5 and 6×6 matrices?
- 6. True or false : give a specific counter example when false. Let $S_{m \times m}$ and $T_{n \times n}$ be two matrices. Then rank(*S*) and rank(*T*) are equal only when m = n.
- 7. Find two 2 \times 2 matrices *K* and *L* such that
 - (a) Kx = 0 has only the trivial solution.
 - (b) Lx = 0 has a non-trivial solution.
- 8. Write down a basis for the vector space of all 3×3 real symmetric matrices.
- 9. For what values of *a*, the matrix $\begin{pmatrix} -1 & a \\ 0 & -1 \end{pmatrix}$ is not similar to the matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$?
- 10. State the rank-nullity theorem and verify it for the matrix $A = \begin{pmatrix} 3 & 1 & 4 \\ 7 & 2 & 8 \end{pmatrix}$.
- 11. Find all solutions of $Ax = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, where $A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$.
 - (a) Express the solution in the form $x = x_{\text{homogeneous}} + x_{\text{particular}}$.
 - (b) Find a basis for the nullspace of *A*.
 - (c) Does there exist a vector $b \in \mathbb{R}^2$ such that Ax = b has no solution?
- 12. No two subspaces of a vector space are disjoint. Why?

- 13. For any matrix *A*, show that the column space, $C(A) = \{0\}$ if and only if A = 0.
- 14. What is the dimension of the vector space of 2×2 matrices with real entries? Write down a basis.

15. Find the inverse of
$$\begin{pmatrix} 1 & -4 & 4 \\ 2 & 2 & 0 \\ -2 & 3 & 3 \end{pmatrix}$$
 by Gauss-Jordan method.

- 16. Find the inverse of the matrix *B* by partitioning where $B = \begin{bmatrix} 1 & 2 & 3 \\ \hline 1 & 3 & 2 \\ 1 & 1 & 5 \end{bmatrix}$.
- 17. Find the rank of the following matrix by reducing it to an echelon matrix:

$$\begin{bmatrix} 2 & 1 & 4 & 0 & 6 \\ 3 & 5 & 9 & 1 & 0 \\ 7 & 7 & 3 & 2 & 8 \\ -9 & -8 & 7 & -3 & -10 \\ 4 & 2 & -20 & 2 & 4 \end{bmatrix}$$

- 18. If v_1, v_2, \ldots, v_n is a basis of *V* over \mathbb{R} and if w_1, w_2, \ldots, w_m in *V* are linearly independent over \mathbb{R} , then show that $m \leq n$.
- 19. By stating all the required results, show that any two bases of \mathbb{R}^n have the same number of basis vectors.
- 20. Show that $W = \{(x, 2x + y, y z, z) : x, y, z \in \mathbb{R}\}$ is a subspace of \mathbb{R}^4 and find a basis for W.

21. Let
$$A = \begin{pmatrix} 1 & 0 & 0 & 4 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 3 & t \end{pmatrix}$$
 and $b = \begin{pmatrix} 2 \\ 0 \\ 0 \\ s \end{pmatrix}$.

- (a) For any real number t, and any real number s, find the complete solution to the equation Ax = b. Note that the complete solution depends on t and s.
- (b) For which *t*, are the columns of the matrix *A* linearly dependent?
- (c) Consider *b* and the first three columns of *A*. For which *s*, are these linearly dependent?
- 22. Finding inverse of $B = \begin{pmatrix} 1 & 3 & 0 \\ 2 & -2 & 1 \\ -4 & 1 & -1 \end{pmatrix}$ by elementary row operations.

The augmented matrix [N c] is row reduced to [I d]. What is the relation between N, c and d?

23. Find the inverse of the above matrix *B* by the method of partitioning.

24. Let
$$B = \begin{pmatrix} 3 & -5 & 1 \\ 0 & 0 & 1 \\ 3 & -7 & 8 \end{pmatrix}$$
. Find the matrices *A* and *C* such that *ABC* is in row reduced echelon form.

25. Give a basis for each of the four fundamental subspaces associated to the following matrix $\begin{pmatrix} 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}$.

26. Suppose
$$A = \begin{pmatrix} 1 & 2 & 1 & b \\ 2 & a & 1 & 8 \\ (row & 3 & of & A \end{pmatrix}$$
 has reduced echelon form $R = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

- (a) What can you say about row 3 of *A*?
- (b) What are the numbers *a* and *b*?
- (c) Describe the nullspace of *A*.