P. Sam Johnson

Computational Linear Algebra - MA 703 Problem Sheet 2

- 1. Construct a 3 × 3 nonzero matrix *A* such that the vector $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ is a solution of Ax = 0.
- 2. Construct three different linear systems Ax = b whose solution set is $x_1 = -2$, $x_2 = 1$ and $x_3 = 0$.
- 3. Find all the values of *a* if the following systems x + y = 1; 2x + ay = 2
 - (a) has only one solution, (b) infinitely many solutions, (c) no solution.
- 4. Choose *h* and *k* such that the system x + hy = 2p; 4x + 8y = k.
 - (a) has only one solution, (b) infinitely many solutions, (c) no solution.
- 5. Under what condition on y_1 , y_2 , y_3 do the points $(0, y_1)$, $(1, y_2)$, $(2, y_3)$ lie on a straight line. What is an appropriate generalization of the result?
- 6. Use Gaussian elimination to find a polynomial which passes through the following points (0,0), (1,4), (-1,0) and (-2,10).
- 7. If (a, b) is a multiple of (c, d) with $abcd \neq 0$, show that (a, c) is a multiple of (b, d).
- 8. Find *LU* factorization of the matrix $\begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{pmatrix}$. 9. Find *LDU* factorization of the matrix $\begin{pmatrix} 3 & -1 & 2 \\ -3 & -2 & 10 \\ 9 & -5 & 6 \end{pmatrix}$. 10. Find *PA* = *LU* factorization of the matrix $\begin{pmatrix} -5 & 3 & 4 \\ 0 & 0 & -9 \\ 15 & 1 & 2 \end{pmatrix}$. 11. Factor the following *tridiagonal* matrices into *LU* and *LDU* : $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$ and $\begin{pmatrix} a & a & 0 \\ a & a+b & b \\ 0 & a & b+c \end{pmatrix}$. 12. If $A = \begin{pmatrix} 1 & -2 \\ -2 & 5 \end{pmatrix}$ and $AB = \begin{pmatrix} -1 & 2 & -1 \\ 6 & -9 & 3 \end{pmatrix}$, determine the first and second columns of *B*. 13. Let $S = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Compute the least positive integer *k* such that *S^k* is the zero matrix.

14. Find E^2 , E^8 and E^{-1} if $E = \begin{pmatrix} 1 & 0 \\ 6 & 1 \end{pmatrix}$.

- 15. Let $P_{n \times n}$ be any permutation matrix. Prove that $P_{n \times n}^m = I_{n \times n}$ for some *m*.
- 16. Given A, find the LU factorization of $A^T A$ and $A A^T$ and compare the factorizations.

17. Let
$$x = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$$
 and $A = \begin{pmatrix} 5 & 8 & 7 \\ 0 & 1 & -1 \\ 1 & 3 & 0 \end{pmatrix}$. Is *x* in the column space of *A*? why or why not?
18. Invert the matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$ by the Gauss-Jordan method.

19. Let $A = \begin{pmatrix} -2 & -7 & -9 \\ 2 & 5 & 6 \\ 1 & 3 & 4 \end{pmatrix}$. Find the third column of A^{-1} with out computing the other columns.

20. Let A be an invertible $n \times n$ matrix, and let B be an $n \times n$ matrix. If $\begin{bmatrix} A & B \end{bmatrix}$ is row equivalent of $\begin{bmatrix} I & X \end{bmatrix}$, what is the relation between X, A and B?

21. Let
$$A = \begin{pmatrix} 2 & 5 \\ -3 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -5 \\ 3 & k \end{pmatrix}$. What value(s) of *k*, if any, will make $AB = BA$?

- 22. Could a set of three vectors in \mathbb{R}^4 span all of \mathbb{R}^4 ? What about *n* vectors in \mathbb{R}^m when in *n* is less than *m*?
- 23. Let *A* be a 3×4 matrix, let y_1 and y_2 be vecotrs in \mathbb{R}^3 , and let $w = y_1 + y_2$. Suppose $y_1 = Ax_1$ and $y_2 = Ax_2$ for some vectors x_1 and x_2 in \mathbb{R}^4 . What fact allows you to conclude that the system Ax = w is consistent?
- 24. Give all the 2 × 2 matrices A such that $A^2 = I$.
- 25. Let *A*, *B* and *C* be matrices with suitable sizes. Prove that (AB)C = A(BC), the matrix multiplication is associative.
- 26. Choose the only *B* (3 by 3 matrix) so that for every matrix *A*,
 - (a) *BA* has rows 1 and 3 of *A* reversed and row 2 (c) All rows of *BA* are the same as row 1 of *A*. unchanged.
 - (b) BA = 4A. (d) BA = 4B.
- 27. What rows or columns or matrices do you multiply to find
 - (a) the third column of *AB*? (c) the entry in row 3, column 4 of *AB*?
 - (b) the first row of *AB*? (d) the entry in row 1, column 1 of *CDE*?
- 28. If you multiply a *northwest matrix* A and a *southeast matrix* B, what type of matrices are AB and BA? "Northwest" and "southeast" mean zeros below and above the antidiagonal going from (1, n) to (n, 1).
- 29. *Elimination for a 2 by 2 block matrix:* When $A^{-1}A = I$, multiply the first block row by CA^{-1} and substract from the second row, to find the "Schur complement" S:

$$\begin{pmatrix} I & 0 \\ -CA^{-1} & I \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & B \\ 0 & S \end{pmatrix}.$$

- 30. Invent a 3 by 3 **magic matrix** *M* with entries 1, 2, ..., 9. All rows and columns and diagonals add to 15. The first row could be 8, 3, 4. What is *M* times (1, 1, 1)? What is the row vector [1 1 1] times *M*?
- 31. Find all matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ that satisfy $A \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} A$.
- 32. Let $V = \mathbb{R}^n$ and A be a $n \times n$ matrix. If Ax = 0 has a unique solution then Ax = b has a unique solution for every $b \in \mathbb{R}^n$.