Computational Linear Algebra - MA 703 Problem Sheet 1

- 1. In each of the following, find precisely which axioms in the definition of a vector space are violated. Take $V = \mathbb{R}^2$ and $F = \mathbb{R}$ throughout
	- (a) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, 0), \quad \alpha(x_1, x_2) = (\alpha x_1, 0)$
	- (b) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \alpha(x_1, x_2) = (\alpha x_1, 0)$
	- (c) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \alpha(x_1, x_2) = (\alpha x_1, 2\alpha x_2)$
	- (d) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \alpha(x_1, x_2) = (\alpha + x_1, \alpha + x_2).$
- 2. True or False : The set of all positive real numbers forms a vector space over **R** if the sum of *x* and *y* is defined to be the usual product xy and α times x is defined to be x^{α} .
- 3. Let *V* be a vector space. On $V \times V$, define $+$, and . as follows:

$$
(x_1, y_1) + (x_2, y_2) = (x_1 + y_1, x_2 + y_2)
$$

$$
\alpha(x, y) = (\alpha x, \alpha y), \alpha \in \mathbb{R}, x, y \in V.
$$

Is $V \times V$ a vector space? If not, write down the conditions (axioms) which are violated.

4. Let $X := \{*\}$ be a singleton set and let *V* be a vector space. Let $W = \{*\} \times V$. Can we turn *W* into a vector space as follows?

$$
(*,x_1) + (*,x_2) = (*,x_1 + x_2), x_1, x_2 \in V
$$

$$
\alpha(*,x) = (*, \alpha x), \alpha \in \mathbb{R}, x \in V.
$$

- 5. Prove or disprove: $Sp(A) \cap Sp(B) \neq \{0\} \implies A \cap B \neq \emptyset$.
- 6. True or False : If $A \subseteq B$ and $Sp(A) \supseteq B$, then $Sp(A) = Sp(B)$.
- 7. If *x* and *y* are linearly independent show that $x + \alpha y$ and $x + \beta y$ are linearly independent whenever $\alpha \neq \beta$.
- 8. Let Sp(*A*) = *S*. Then show that no proper subset of *A* generates *S* iff *A* is linearly independent.
- 9. For what values of *α* are the vectors (0, 1, *α*),(*α*, 1, 0) and (1, *α*, 1) in **R**³ linearly independent.
- 10. Given *W*1, *W*² vector subspaces of *V*, does there exist any smallest vector subspace *W*³ containing *W*¹ and W_2 ?
- 11. Let *W* be a vector subspace of *V*. What is $w + W$ if $w \in W$? What is $W + W$? Is is true that $w + W = W$ if and only if $w \in W$?
- 12. Say true or false: If *x* and *y* are linearly independent vectors in *V*, then so are $x + y$ and $x y$.
- 13. Prove or disprove: If *A*, *B* and *C* are pair-wise disjoint subsets of *V* such that $A \cup B$ and $A \cup C$ are bases of *V*, then $Sp(B) = Sp(C)$.
- 14. Let x_1, x_2, \ldots, x_n be fixed distinct real numbers.
	- (a) Show that $\ell_1(t)$, $\ell_2(t)$, . . . , $\ell_n(t)$ form a basis of \mathcal{P}_n , where $\ell_i(t) = \prod_{i \neq j} (t x_j)$. This basis leads to what is known as *Lagrange's interpolation formula*. If $f(t) \in P_n$ is written as $\sum_{i=1}^n \alpha_i \ell_i(t)$, show that $\alpha_i = f(x_i)/\ell_i(x_i)$.
	- (b) Show that $\psi_1(t)$, $\psi_2(t)$, ..., $\psi_n(t)$ form a basis of \mathcal{P}_n , where $\psi_i(t) = 1$ and $\psi_i(t) = \prod_{j=1}^{i=1} (t x_j)$ for *i* = 2, . . . , *n*. This basis leads to what is known as *Newton's divided difference formula*.
- 15. Let *V* be a vector space. Prove that arbitrary intersection of subspaces of *V* is again a subspace of *V*. Is a union of two subspaces again a subspace?
- 16. Extend $A = \{(1, 1, ..., 1)\}$ to a basis of \mathbb{R}^n .
- 17. Let *S* and *T* be subspaces of a vector space *V* with $d(S) = 2$, $d(T) = 3$ and $d(V) = 5$. Find the minimum and maximum possible values of $d(S + T)$ and show that every (integer) value between these can be attained.
- 18. Show that the distributive law

$$
S \cup (T + W) = (S \cup T) + (S \cup W)
$$

is false for subspaces. However prove that it holds whenever $S \supseteq T$ or $S \supseteq W$. This latter result is known as the *modular law*.

- 19. The sum of two subspaces *S* and *T* is said to be *direct* (or *S* and *T independent*) if any vector in *S* + *T* can be expressed in a unique way as $x + y$ with $x \in S$ and $y \in T$. Prove that the following statements are equivalent.
	- (a) $S + T$ is direct.
	- (b) $S \cup T = \{0\}.$
	- (c) If $x \in S \{0\}$ and $y \in T \{0\}$, then x, y are linearly independent.
	- (d) $0 = x + y, x \in S, y \in T \Rightarrow x = 0 \text{ and } y = 0.$
	- (e) $d(S+T) = d(S) + d(T)$.
- 20. Say true or false: A complement of a subspace is unique.
- 21. True or False : If $\{x_1, x_2, \ldots, x_k\}$ is a basis of a subspace *S*, then
	- (a) $\{\alpha x_1, x_2, \ldots, x_k\}$ is a basis of *S* iff $\alpha \neq 0$.
	- (b) $\{x_1 + \beta x_2, x_2, \ldots, x_k\}$ is a basis of *S* for any scalar *β*.
	- (c) $\{x_1 + \beta x_2, \alpha x_1 + x_2, x_3, \dots, x_k\}$ is a basis of *S* iff $\alpha \beta \neq 1$.
- 22. Consider the subspaces
	- (a) *S*¹ = {(*α*, *β*, *α*, *β*, −2*α* − 2*β*) : *α*, *β* ∈ **R**}
	- (b) $S_2 = \{ (\alpha, \alpha, \beta, \beta, -2\alpha 2\beta) : \alpha, \beta \in \mathbb{R} \}$
	- (c) *S*³ = {(*α*, *β*, *β*, 2*β* − *α*, −4*β*) : *α*, *β* ∈ **R**}
	- (d) $S_4 = \{(0, \alpha, 0, \beta, -\alpha \beta) : \alpha, \beta \in \mathbb{R}\}\text{ of } \mathbb{R}^5.$

Find an ordered basis of $S_1 + \cdots + S_4$ such that the first r_i vectors form a basis of $S_1 + \cdots + S_i$ (for some *rⁱ*) for each *i*.