P. Sam Johnson

Computational Linear Algebra - MA 703 Problem Sheet 1

- 1. In each of the following, find precisely which axioms in the definition of a vector space are violated. Take $V = \mathbb{R}^2$ and $F = \mathbb{R}$ throughout
 - (a) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, 0), \quad \alpha(x_1, x_2) = (\alpha x_1, 0)$
 - (b) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \alpha(x_1, x_2) = (\alpha x_1, 0)$
 - (c) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \alpha(x_1, x_2) = (\alpha x_1, 2\alpha x_2)$
 - (d) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \alpha(x_1, x_2) = (\alpha + x_1, \alpha + x_2).$
- 2. True or False : The set of all positive real numbers forms a vector space over \mathbb{R} if the sum of *x* and *y* is defined to be the usual product *xy* and α times *x* is defined to be x^{α} .
- 3. Let *V* be a vector space. On $V \times V$, define +, and . as follows:

$$\begin{aligned} & (x_1, y_1) + (x_2, y_2) &= (x_1 + y_1, x_2 + y_2) \\ & \alpha(x, y) &= (\alpha x, \alpha y), \alpha \in \mathbb{R}, x, y \in V. \end{aligned}$$

Is $V \times V$ a vector space? If not, write down the conditions (axioms) which are violated.

4. Let $X := \{*\}$ be a singleton set and let V be a vector space. Let $W = \{*\} \times V$. Can we turn W into a vector space as follows?

$$(*, x_1) + (*, x_2) = (*, x_1 + x_2), x_1, x_2 \in V$$

 $\alpha(*, x) = (*, \alpha x), \alpha \in \mathbb{R}, x \in V.$

- 5. Prove or disprove: $Sp(A) \cap Sp(B) \neq \{0\} \implies A \cap B \neq \emptyset$.
- 6. True or False : If $A \subseteq B$ and $Sp(A) \supseteq B$, then Sp(A) = Sp(B).
- 7. If *x* and *y* are linearly independent show that $x + \alpha y$ and $x + \beta y$ are linearly independent whenever $\alpha \neq \beta$.
- 8. Let Sp(A) = S. Then show that no proper subset of A generates S iff A is linearly independent.
- 9. For what values of α are the vectors $(0, 1, \alpha)$, $(\alpha, 1, 0)$ and $(1, \alpha, 1)$ in \mathbb{R}^3 linearly independent.
- 10. Given W_1 , W_2 vector subspaces of V, does there exist any smallest vector subspace W_3 containing W_1 and W_2 ?
- 11. Let *W* be a vector subspace of *V*. What is w + W if $w \in W$? What is W + W? Is is true that w + W = W if and only if $w \in W$?
- 12. Say true or false: If *x* and *y* are linearly independent vectors in *V*, then so are x + y and x y.
- 13. Prove or disprove: If *A*, *B* and *C* are pair-wise disjoint subsets of *V* such that $A \cup B$ and $A \cup C$ are bases of *V*, then Sp(B) = Sp(C).

- 14. Let x_1, x_2, \ldots, x_n be fixed distinct real numbers.
 - (a) Show that $\ell_1(t), \ell_2(t), \dots, \ell_n(t)$ form a basis of \mathcal{P}_n , where $\ell_i(t) = \prod_{i \neq j} (t x_j)$. This basis leads to what is known as *Lagrange's interpolation formula*. If $f(t) \in \mathcal{P}_n$ is written as $\sum_{i=1}^n \alpha_i \ell_i(t)$, show that $\alpha_i = f(x_i) / \ell_i(x_i)$.
 - (b) Show that $\psi_1(t), \psi_2(t), \dots, \psi_n(t)$ form a basis of \mathcal{P}_n , where $\psi_i(t) = 1$ and $\psi_i(t) = \prod_{j=1}^{i=1} (t x_j)$ for $i = 2, \dots, n$. This basis leads to what is known as *Newton's divided difference formula*.
- 15. Let *V* be a vector space. Prove that arbitrary intersection of subspaces of *V* is again a subspace of *V*. Is a union of two subspaces again a subspace?
- 16. Extend $A = \{(1, 1, ..., 1)\}$ to a basis of \mathbb{R}^{n} .
- 17. Let *S* and *T* be subspaces of a vector space *V* with d(S) = 2, d(T) = 3 and d(V) = 5. Find the minimum and maximum possible values of d(S + T) and show that every (integer) value between these can be attained.
- 18. Show that the distributive law

$$S \cup (T + W) = (S \cup T) + (S \cup W)$$

is false for subspaces. However prove that it holds whenever $S \supseteq T$ or $S \supseteq W$. This latter result is known as the *modular law*.

- 19. The sum of two subspaces *S* and *T* is said to be *direct* (or *S* and *T independent*) if any vector in S + T can be expressed in a unique way as x + y with $x \in S$ and $y \in T$. Prove that the following statements are equivalent.
 - (a) S + T is direct.
 - (b) $S \cup T = \{0\}.$
 - (c) If $x \in S \{0\}$ and $y \in T \{0\}$, then *x*, *y* are linearly independent.
 - (d) $0 = x + y, x \in S, y \in T \Rightarrow x = 0$ and y = 0.
 - (e) d(S+T) = d(S) + d(T).
- 20. Say true or false: A complement of a subspace is unique.
- 21. True or False : If $\{x_1, x_2, ..., x_k\}$ is a basis of a subspace *S*, then
 - (a) $\{\alpha x_1, x_2, \dots, x_k\}$ is a basis of *S* iff $\alpha \neq 0$.
 - (b) $\{x_1 + \beta x_2, x_2, \dots, x_k\}$ is a basis of *S* for any scalar β .
 - (c) $\{x_1 + \beta x_2, \alpha x_1 + x_2, x_3, \dots, x_k\}$ is a basis of *S* iff $\alpha \beta \neq 1$.
- 22. Consider the subspaces
 - (a) $S_1 = \{(\alpha, \beta, \alpha, \beta, -2\alpha 2\beta) : \alpha, \beta \in \mathbb{R}\}$
 - (b) $S_2 = \{(\alpha, \alpha, \beta, \beta, -2\alpha 2\beta) : \alpha, \beta \in \mathbb{R}\}$
 - (c) $S_3 = \{(\alpha, \beta, \beta, 2\beta \alpha, -4\beta) : \alpha, \beta \in \mathbb{R}\}$
 - (d) $S_4 = \{(0, \alpha, 0, \beta, -\alpha \beta) : \alpha, \beta \in \mathbb{R}\}$ of \mathbb{R}^5 .

Find an ordered basis of $S_1 + \cdots + S_4$ such that the first r_i vectors form a basis of $S_1 + \cdots + S_i$ (for some r_i) for each *i*.