Matrix Multiplication Problems Part - 1

P. Sam Johnson

September 15, 2014

P. Sam Johnson (NITK) [Matrix Multiplication Problems Part - 1](#page-27-0) September 15, 2014 1 / 28

4.0.3

 \mathbb{B} is a \mathbb{B} is

 299

目

Overview

The proper study of matrix computations begins with the study of the matrix-matrix multiplication problem. Although this problem is simple mathematically it is very rich from the computational point of view.

- The several ways that the matrix multiplication problem is organized.
- Matrix computations are built upon a hierarchy of linear algebraic operations.
- **Dot products** involve the scalar operations of addition and multiplication.
- Matrix-vector multiplication is made up of dot products.
- Matrix-matrix multiplication amounts to a collection of matrix-vector products.

All of these operations can be described in algorithmic form or in the language of linear algebra. Our primary objective is to show how these two styles of expression complement each another. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ QQ Let $\mathbb R$ denote the set of real numbers. We denote the vector space of all $m \times n$ real matrices by $\mathbb{R}^{m \times n}$.

$$
A\in\mathbb{R}^{m\times n} \Leftrightarrow A=(a_{ij})=\left[\begin{array}{cccc}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\ \cdots&\cdots&\cdots&\cdots\\a_{m1}&a_{m2}&\cdots&a_{mn}\end{array}\right]\qquad a_{ij}\in\mathbb{R}.
$$

Capital letters (e.g. A , B) are used to denote matrices whereas the corresponding lower case letters (e.g. a_{ii} , b_{ii}) refer to entries of the matrices.

Greek letters (e.g. α , β) are usually denoted for (real) scalars.

KORKA ERKER ADA YOUR

Basic matrix operations include

- **1** addition : $(A, B) \mapsto A + B$.
- **2** scalar-matrix multiplication : $(\alpha, A) \mapsto \alpha A$.
- **matrix-matrix multiplication** : $(A, B) \mapsto AB$.
- $\bullet \quad \bullet$ transposition : $A \mapsto A^{\mathcal{T}}.$

These are the building blocks of matrix computations.

Vector Space : The set of all the n-tuples with real entries

Let \mathbb{R}^n denote the vector space of real *n*-vectors.

$$
x \in \mathbb{R}^n \Leftrightarrow x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad x_i \in \mathbb{R}.
$$

We refer to x_i as the *i*th component of x.

Notice that we are identifying \mathbb{R}^n with $\mathbb{R}^{n\times 1}$ and so the members of \mathbb{R}^n are column vectors.

On other hand, the elements of $\mathbb{R}^{1\times n}$ are row vectors.

$$
x\in\mathbb{R}^{1\times n} \Leftrightarrow x=(x_1,x_2,\ldots,x_n).
$$

If x is the column [ve](#page-3-0)[cto](#page-5-0)[r](#page-3-0), then $y = x^T$ is a row vector[.](#page-4-0)

 \equiv \cap α

Vector Operations

Assume $\alpha \in \mathbb{R}, \mathsf{x} \in \mathbb{R}^n$ and $\mathsf{y} \in \mathbb{R}^n$. Basic vector operations include

1 scalar-vector multiplication : $(\alpha, x) \mapsto \alpha x$

$$
z = \alpha x \implies z_i = \alpha x_i,
$$

2 vector addition : $(x, y) \mapsto x + y$

$$
z = x + y \quad \Longrightarrow \quad z_i = x_i + y_i,
$$

 $\bullet\hspace{0.1cm}$ the dot product (or inner product) : $(x,y)\mapsto x^{\mathcal T}y$

$$
c = x^T y
$$
 \implies $c = \sum_{i=1}^n x_i y$,

 \bullet vector multiply (or the Hadamard product) : $(x, y) \mapsto x.* y$

$$
z = x.* y \qquad \Longrightarrow \qquad z_i = x_i y_i.
$$

 \equiv Ω

Another very important operation which we write in "**update form**" is the saxpy. It means "Scalar $a \times b$ plus y .

$$
y = ax + y \Rightarrow y_i = ax_i + y_i.
$$

Here the symbol $=$ " is being used to denote assignment, **not** mathematical equality.

The vector y is being updated.

The name "saxpy" is used in LAPACK, a software package that implements many of the algorithms in the course.

KOD KARD KED KED B YOUR

Algorithm : Dot Product

We have chosen to express algorithms in a stylized version of the MATLAB language.

Algorithm (Dot Product)

If $x, y \in \mathbb{R}^n$, then this algorithm computes their dot product $c = x^T y$.

```
c = 0for i = 1:nc = c + x(i)y(i)end
```
The dot product of two *n*-vectors involves *n* multiplications and *n* additions. It is an " $O(n)$ " operation, meaning that the amount of work is linear in the dimension.

The saxpy computation is also an $O(n)$ operation, but it returns a vector instead of a scalar.

Algorithm (Saxpy)

If $x, y \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, then this algorithm overwrites y with $\alpha x + y$.

for
$$
i = 1 : n
$$

\n $y(i) = \alpha x(i) + y(i)$
\nend

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

- 3

Generalized saxpy, called gaxpy

Suppose $A \in \mathbb{R}^{m \times n}$ and that we wish to compute the update

$$
y = Ax + y
$$

where $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$ are given.

This generalized SAXPY operation is referred to as a gAXPY. A standard way that this computation proceeds is to update the components on at a time:

$$
y_i = \sum_{j=1}^n a_{ij}x_j + y_i \qquad i = 1:m.
$$

KORKA ERKER ADA YOUR

Algorithm (Gaxpy: Row version)

If $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, and $y \in \mathbb{R}^m$, then this algorithm overwrites y with $Ax + y$.

for
$$
i = 1 : m
$$

\nfor $j = 1 : n$
\n $y(i) = A(i, j)x(j) + y(i)$
\nend
\nend

K 何 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ め&企

Algorithm (Gaxpy : Column Version)

If $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, and $y \in \mathbb{R}^m$, then this algorithm overwrites y with $Ax + y$.

for
$$
j = 1 : n
$$

\nfor $i = 1 : m$
\n $y(i) = A(i, j)x(j) + y(i)$
\nend
\nend

K 何 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ め&企

Partitioning a Matrix into Rows and Columns

Algorithms [Gaxpy: Row version] and [Gaxpy: Column version] access the data in A by row and by column respectively.

To highlight these orientations more clearly we introduce the language of partitioned matrices.

From the row point of view, a matrix is a stack of row vectors.

$$
A \in \mathbb{R}^{m \times n} \Leftrightarrow A = \begin{bmatrix} r_1^T \\ \vdots \\ r_m^T \end{bmatrix} \qquad r_k \in \mathbb{R}^n \qquad (1)
$$

This is called a row partition of A.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 $=$ Ω

Example : Row Partition

Thus, if we row partition
$$
\begin{bmatrix} 1 & 2 \ 3 & 4 \ 5 & 6 \end{bmatrix}
$$
, then we are choosing to think of *A* as a collection of rows with $\begin{bmatrix} 1 & 2 \end{bmatrix}$, $\begin{bmatrix} 3 & 4 \end{bmatrix}$, and $\begin{bmatrix} 5 & 6 \end{bmatrix}$. With the row partitioning, Algorithm [Gaxyy: Row version] can be expressed as follows:

for
$$
i = 1 : m
$$

\n $y_i = r_i^T x + y(i)$
\nend

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 ①

Alternatively, a matrix is a collection of columns vectors:

$$
A \in \mathbb{R}^{m \times n} \Leftrightarrow A = [c_1, \ldots, c_n], \quad c_k \in \mathbb{R}^m. \tag{2}
$$

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 \equiv \cap α

We refer to this as a column partition of A.

With [\(2\)](#page-14-0) we see that Algorithm [Gaxpy : Column Version] is a saxpy procedure that accesses A by column.

for
$$
j = 1 : n
$$

\n $y = x_j c_j + y$
\nend

"Colon" Notation

A handy way to specify a column or row of a matrix is with the "colon" notation.

If $A \in \mathbb{R}^{m \times n}$, then $A(k, :)$ designates the kth row & $A(:, k)$ designates the kth column. With this conventions we can rewrite Algorithms [Gaxpy : Row and Column Versions] as

for
$$
i = 1 : m
$$

\n $y(i) = A(i,:)x + y(i)$
\nend

and

for
$$
j = 1 : n
$$

\n $y = x(j)A(:,j) + y$
\nend

respectively. With the colon notation we are able to suppress iteration details. This frees us to think at the vector level and focus on larger computational issues. **KORKA ERKER ADA YOUR**

Outer Product Update

As a preliminary application of the colon notation, we use it to understand the outer product update

$$
A = A + xy^T, \quad A \in \mathbb{R}^{m \times n}, \quad x \in \mathbb{R}^m, \quad y \in \mathbb{R}^n.
$$

The outer product operation xy^T "looks funny" but is perfectly legal. For example

$$
xy^{\mathcal{T}} = \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right] \left[\begin{array}{cc} 4 & 5 \end{array} \right] = \left[\begin{array}{cc} 4 & 5 \\ 8 & 10 \\ 12 & 15 \end{array} \right]
$$

is the product of two "skinny" matrices. The entries in the outer product update are prescribed by

for
$$
i = 1 : m
$$

\nfor $j = 1 : n$
\n $a_{ij} = a_{ij} + x_i y_j$
\nend
\nend

 $A \oplus B$ $A \oplus B$ $A \oplus B$

 $=$ Ω

Matrix-Matrix Multiplication

In the saxpy version each column in the product is regarded as a linear combination of columns of A.

$$
\left[\begin{array}{cc}1 & 2 \\3 & 4\end{array}\right]\left[\begin{array}{cc}5 & 6 \\7 & 8\end{array}\right]=\left[5\left[\begin{array}{c}1 \\3\end{array}\right]+7\left[\begin{array}{c}2 \\4\end{array}\right], 6\left[\begin{array}{c}1 \\3\end{array}\right]+8\left[\begin{array}{c}2 \\4\end{array}\right]\right].
$$

Finally, in the outer product version, the result is regarded as the sum of outer products:

$$
\left[\begin{array}{cc}1&2\\3&4\end{array}\right]\left[\begin{array}{cc}5&6\\7&8\end{array}\right]=\left[\begin{array}{c}1\\3\end{array}\right]\left[\begin{array}{cc}5&6\end{array}\right]+\left[\begin{array}{c}2\\4\end{array}\right]\left[\begin{array}{cc}7&8\end{array}\right].
$$

Although equivalent mathematically, it turns out that these versions of matrix multiplication can have very different levels of performance because of their memory traffic properties.

イロト イ押ト イヨト イヨト

 $=$ Ω

Scalar-Level Specifications

We focus on the following matrix multiplication update

 $C = AB + C$, $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times n}$, $C \in \mathbb{R}^{m \times n}$.

The starting point is the familiar triply-nested loop algorithm:

Algorithm (Matrix Multiplication : ijk Variant)

If $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times n}$, and $C \in \mathbb{R}^{m \times n}$ are given, then this algorithm overwrites C with $AB + C$.

for
$$
i = 1 : m
$$

\nfor $j = 1 : n$
\nfor $k = 1 : p$
\n $C(i,j) = A(i,k)B(k,j) + C(i,j)$
\nend
\nend
\nend
\n $C(i,j) = A(i,k)B(k,j) + C(i,j)$

P. Sam Johnson (NITK) [Matrix Multiplication Problems Part - 1](#page-0-0) September 15, 2014 19 / 28

This is the "ijk variant" because we identify the rows of C (and A) with i, the columns of C (and B) with *i*, and the summation index with k .

We consider the update $C = AB + C$ instead of just $C = AB$ for two reasons. We do not have to bother with $C = 0$ initializations and updates of the form $C = AB + C$ arise more frequently in practice.

The three loops in the matrix multiplication update can be arbitrarily ordered giving $3! = 6$ vairations.

Each variant involves the same amount of floating point arithmetic, but accesses the A, B and C data differently.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Matrix Multiplication : Dot Product Version

Using the colon notation we can highlight this dot-product formulation.

Algorithm (Matrix Multiplication : Dot Product Version)

If $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times n}$, and $C \in \mathbb{R}^{m \times n}$ are given, then this algorithm overwrites C with $AB + C$.

for
$$
i = 1 : m
$$

\nfor $j = 1 : n$
\n $C(i, j) = A(i, :)B(:, j) + C(i, j)$
\nend
\nend

 \equiv \cap α

Algorithm (Matrix Multiplicationm : Saxpy Version)

If the matrices $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times n}$, and $C \in \mathbb{R}^{m \times n}$ are given, then this algorithm overwrites C with $AB + C$.

for
$$
j = 1 : n
$$

\nfor $k = 1 : p$
\n $C(:,j) = A(:,k)B(k,j) + C(:,j)$
\nend
\nend

Matrix Multiplication : Outer Product Version

Algorithm (Matrix Multiplication : Outer Product Version)

If $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times n}$, and $C \in \mathbb{R}^{m \times n}$ are given, then this algorithm overwrites C with $AB + C$.

for
$$
k = 1 : p
$$

\n
$$
C = A(:, k)B(k, :) + C
$$
\nend

This implementation revolves around the fact that AB is the sum of p outer products.

 Ω

The Notion of "Level"

The dot product and saxpy operations are examples of "level-1" operations. Level-1 operations involve and amount of data and an amount of arithmetic that is linear in the dimension of the operation. An $m \times n$ outer product update or gaxpy operation involves a quadratic amount of data $(O(mn))$ and a quadratic amount of work $(O(mn))$. They are examples of "level-2" operations.

The matrix update $C = AB + C$ is a "level-3" operation. Level-3 operations involve a quadratic amount of data and a cubic amount of work. If A, B and C are $n \times n$ matrices, then $C = AB + C$ involves $O(n^2)$ matrix entries and $O(n^3)$ arithmetic operations.

Numerous matrix equations are established algorithmically like athe above outer product expansion and other times they are proved at the $i-j$ component level. As an example of the latter, we prove an important result that characterizes transposes of products.

KOD KARD KED KED B YOUR

Theorem

If
$$
A \in \mathbb{R}^{m \times p}
$$
, and $B \in \mathbb{R}^{p \times n}$, then $(AB)^T = B^T A^T$.

Proof.

If $C = (AB)^T$, then

$$
c_{ij} = [(AB)^{T}]_{ij} = [AB]_{ji} = \sum_{k=1}^{p} a_{jk} b_{ki}.
$$

On the other hand, if $D=B^TA^T$, then

$$
d_{ij} = [B^T A^T]_{ij} = \sum_{k=1}^p [B^T]_{ik} [A^T]_{kj} = \sum_{k=1}^p b_{ki} a_{jk}.
$$

Since $c_{ij} = d_{ij}$ for all *i* and *j*, it follows that $C = D$.

 -1 -1

- イヨト イヨト

目

Computations that involve complex matrices

The vector space of $m \times n$ complex matrices is designated by $\mathbb{C}^{m \times n}$. The scaling, addition and multiplication of complex matrices corresponds exactly to the real case. However, transposition becomes **conjugate** transposition :

$$
C=A^H \quad \Rightarrow \quad c_{ij}=\overline{a}_{ji}.
$$

The vector space of complex *n*-vectors is designated by \mathbb{C}^n . The dot product of complex *n*-vectors x and y is prescribed by

$$
s = x^H y = \sum_{i=1}^n \overline{x}_i y_i.
$$

Finally, if $A = B + iC \in \mathbb{C}^{m \times n}$, the we designate the real and imaginary parts of A by $\text{Re}(A)=B$ and $\text{Im}(A)=C$ respectively.

KORKA ERKER ADA YOUR

References

- Gene H. Golub and Charles F. Van Loan, Matrix Computations, Third Edition, Hindustan Book Agency, 2007.
- **D.S. Watkins**, Fundamentals of Matrix Computations, John Wiley & Sons, New York, 1991.

 \equiv