
Matrix Multiplication Problems
Part - 1

P. Sam Johnson

September 15, 2014

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 1 / 28

Overview

The proper study of matrix computations begins with the study of the
matrix-matrix multiplication problem. Although this problem is simple
mathematically it is very rich from the computational point of view.

The several ways that the matrix multiplication problem is organized.

Matrix computations are built upon a hierarchy of linear algebraic
operations.

Dot products involve the scalar operations of addition and
multiplication.

Matrix-vector multiplication is made up of dot products.

Matrix-matrix multiplication amounts to a collection of
matrix-vector products.

All of these operations can be described in algorithmic form or in the
language of linear algebra. Our primary objective is to show how these two
styles of expression complement each another.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 2 / 28

Matrix Notation

Let R denote the set of real numbers. We denote the vector space of all
m × n real matrices by Rm×n.

A ∈ Rm×n ⇔ A = (aij) =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
am1 am2 · · · amn

 aij ∈ R.

Capital letters (e.g. A, B) are used to denote matrices whereas the
corresponding lower case letters (e.g. aij , bij) refer to entries of the
matrices.

Greek letters (e.g. α, β) are usually denoted for (real) scalars.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 3 / 28

Matrix Operations

Basic matrix operations include

1 addition : (A,B) 7→ A + B.

2 scalar-matrix multiplication : (α,A) 7→ αA.

3 matrix-matrix multiplication : (A,B) 7→ AB.

4 transposition : A 7→ AT .

These are the building blocks of matrix computations.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 4 / 28

Vector Space : The set of all the n-tuples with real entries

Let Rn denote the vector space of real n-vectors.

x ∈ Rn ⇔ x =


x1
x2
...
xn

 xi ∈ R.

We refer to xi as the ith component of x .

Notice that we are identifying Rn with Rn×1 and so the members of Rn

are column vectors.

On other hand, the elements of R1×n are row vectors.

x ∈ R1×n ⇔ x = (x1, x2, . . . , xn).

If x is the column vector, then y = xT is a row vector.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 5 / 28

Vector Operations

Assume α ∈ R, x ∈ Rn and y ∈ Rn. Basic vector operations include

1 scalar-vector multiplication : (α, x) 7→ αx

z = αx =⇒ zi = αxi ,

2 vector addition : (x , y) 7→ x + y

z = x + y =⇒ zi = xi + yi ,

3 the dot product (or inner product) : (x , y) 7→ xT y

c = xT y =⇒ c =
n∑

i=1

xiy ,

4 vector multiply (or the Hadamard product) : (x , y) 7→ x . ∗ y

z = x . ∗ y =⇒ zi = xiyi .

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 6 / 28

Another Important Vector Operation

Another very important operation which we write in “update form” is the
saxpy. It means “scalar a x plus y .

y = ax + y ⇒ yi = axi + yi .

Here the symbol “=” is being used to denote assignment, not
mathematical equality.

The vector y is being updated.

The name “saxpy” is used in LAPACK, a software package that
implements many of the algorithms in the course.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 7 / 28

Algorithm : Dot Product

We have chosen to express algorithms in a stylized version of the
MATLAB language.

Algorithm (Dot Product)

If x , y ∈ Rn, then this algorithm computes their dot product c = xT y.

c = 0
for i = 1 : n

c = c + x(i)y(i)
end

The dot product of two n-vectors involves n multiplications and n
additions. It is an “O(n)” operation, meaning that the amount of work is
linear in the dimension.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 8 / 28

Algorithm : Saxpy Computation

The saxpy computation is also an O(n) operation, but it returns a vector
instead of a scalar.

Algorithm (Saxpy)

If x , y ∈ Rn and α ∈ R, then this algorithm overwrites y with αx + y.

for i = 1 : n
y(i) = αx(i) + y(i)

end

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 9 / 28

Generalized saxpy, called gaxpy

Suppose A ∈ Rm×n and that we wish to compute the update

y = Ax + y

where x ∈ Rn and y ∈ Rm are given.

This generalized saxpy operation is referred to as a gaxpy.

A standard way that this computation proceeds is to update the
components on at a time:

yi =
n∑

j=1

aijxj + yi i = 1 : m.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 10 / 28

Algorithm : Gaxpy - Row version

Algorithm (Gaxpy: Row version)

If A ∈ Rm×n, x ∈ Rn, and y ∈ Rm, then this algorithm overwrites y with
Ax + y.

for i = 1 : m
for j = 1 : n

y(i) = A(i , j)x(j) + y(i)
end

end

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 11 / 28

Algorithm : Gaxpy - Column version

Algorithm (Gaxpy : Column Version)

If A ∈ Rm×n, x ∈ Rn, and y ∈ Rm, then this algorithm overwrites y with
Ax + y.

for j = 1 : n
for i = 1 : m

y(i) = A(i , j)x(j) + y(i)
end

end

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 12 / 28

Partitioning a Matrix into Rows and Columns

Algorithms [Gaxpy: Row version] and [Gaxpy: Column version] access the
data in A by row and by column respectively.

To highlight these orientations more clearly we introduce the language of
partitioned matrices.

From the row point of view, a matrix is a stack of row vectors.

A ∈ Rm×n ⇔ A =

 rT1
...
rTm

 rk ∈ Rn (1)

This is called a row partition of A.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 13 / 28

Example : Row Partition

Thus, if we row partition

 1 2
3 4
5 6

 , then we are choosing to think of A as

a collection of rows with
[

1 2
]
,
[

3 4
]
, and

[
5 6

]
.

With the row partitioning, Algorithm [Gaxpy: Row version] can be
expressed as follows:

for i = 1 : m
yi = rTi x + y(i)

end

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 14 / 28

Column Partition

Alternatively, a matrix is a collection of columns vectors:

A ∈ Rm×n ⇔ A = [c1, . . . , cn] , ck ∈ Rm. (2)

We refer to this as a column partition of A.

With (2) we see that Algorithm [Gaxpy : Column Version] is a saxpy
procedure that accesses A by column.

for j = 1 : n
y = xjcj + y

end

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 15 / 28

“Colon” Notation

A handy way to specify a column or row of a matrix is with the “colon”
notation.

If A ∈ Rm×n, then A(k , :) designates the kth row & A(:, k) designates the
kth column. With this conventions we can rewrite Algorithms [Gaxpy :
Row and Column Versions] as

for i = 1 : m
y(i) = A(i , :)x + y(i)

end
and

for j = 1 : n
y = x(j)A(:, j) + y

end
respectively. With the colon notation we are able to suppress iteration
details. This frees us to think at the vector level and focus on larger
computational issues.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 16 / 28

Outer Product Update

As a preliminary application of the colon notation, we use it to understand
the outer product update

A = A + xyT , A ∈ Rm×n, x ∈ Rm, y ∈ Rn.

The outer product operation xyT “looks funny” but is perfectly legal. For
example

xyT =

 1
2
3

 [4 5
]

=

 4 5
8 10

12 15


is the product of two “skinny” matrices. The entries in the outer product
update are prescribed by

for i = 1 : m
for j = 1 : n

aij = aij + xiyj
end

end
P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 17 / 28

Matrix-Matrix Multiplication

In the saxpy version each column in the product is regarded as a linear
combination of columns of A.[

1 2
3 4

] [
5 6
7 8

]
=

[
5

[
1
3

]
+ 7

[
2
4

]
, 6

[
1
3

]
+ 8

[
2
4

]]
.

Finally, in the outer product version, the result is regarded as the sum of
outer products:[

1 2
3 4

] [
5 6
7 8

]
=

[
1
3

] [
5 6

]
+

[
2
4

] [
7 8

]
.

Although equivalent mathematically, it turns out that these versions of
matrix multiplication can have very different levels of performance because
of their memory traffic properties.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 18 / 28

Scalar-Level Specifications

We focus on the following matrix multiplication update

C = AB + C , A ∈ Rm×p, B ∈ Rp×n, C ∈ Rm×n.

The starting point is the familiar triply-nested loop algorithm:

Algorithm (Matrix Multiplication : ijk Variant)

If A ∈ Rm×p, B ∈ Rp×n, and C ∈ Rm×n are given, then this algorithm
overwrites C with AB + C.

for i = 1 : m
for j = 1 : n

for k = 1 : p
C (i , j) = A(i , k)B(k , j) + C (i , j)

end
end

end
P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 19 / 28

This is the “ijk variant” because we identify the rows of C (and A) with i ,
the columns of C (and B) with j , and the summation index with k .

We consider the update C = AB + C instead of just C = AB for two
reasons. We do not have to bother with C = 0 initializations and updates
of the form C = AB + C arise more frequently in practice.

The three loops in the matrix multiplication update can be arbitrarily
ordered giving 3! = 6 vairations.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 20 / 28

Each variant involves the same amount of floating point arithmetic, but
accesses the A,B and C data differently.
Loop
Order

Inner
Loop

Middle Loop Inner Loop Data
Access

ijk dot vector×matrix A by row, B by
column

jik dot matrix × vector A by row, B by
column

ikj saxpy row gaxpy B by row, C by row

jki saxpy column gaxpy A by column, C by
column

kij saxpy row outer
product

B by row, C by row

kji saxpy column outer
product

A by column, C by
column

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 21 / 28

Matrix Multiplication : Dot Product Version

Using the colon notation we can highlight this dot-product formulation.

Algorithm (Matrix Multiplication : Dot Product Version)

If A ∈ Rm×p, B ∈ Rp×n, and C ∈ Rm×n are given, then this algorithm
overwrites C with AB + C.

for i = 1 : m
for j = 1 : n

C (i , j) = A(i , :)B(:, j) + C (i , j)
end

end

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 22 / 28

Matrix Multiplication : Saxpy Version

Algorithm (Matrix Multiplicationm : Saxpy Version)

If the matrices A ∈ Rm×p, B ∈ Rp×n, and C ∈ Rm×n are given, then this
algorithm overwrites C with AB + C.

for j = 1 : n
for k = 1 : p

C (:, j) = A(:, k)B(k , j) + C (:, j)
end

end

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 23 / 28

Matrix Multiplication : Outer Product Version

Algorithm (Matrix Multiplication : Outer Product Version)

If A ∈ Rm×p, B ∈ Rp×n, and C ∈ Rm×n are given, then this algorithm
overwrites C with AB + C.

for k = 1 : p
C = A(:, k)B(k, :) + C

end

This implementation revolves around the fact that AB is the sum of p
outer products.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 24 / 28

The Notion of “Level”

The dot product and saxpy operations are examples of “level-1”
operations. Level-1 operations involve and amount of data and an amount
of arithmetic that is linear in the dimension of the operation. An m × n
outer product update or gaxpy operation involves a quadratic amount of
data (O(mn)) and a quadratic amount of work (O(mn)). They are
examples of “level-2” operations.

The matrix update C = AB + C is a “level-3” operation. Level-3
operations involve a quadratic amount of data and a cubic amount of
work. If A,B and C are n × n matrices, then C = AB + C involves O(n2)
matrix entries and O(n3) arithmetic operations.

Numerous matrix equations are established algorithmically like athe above
outer product expansion and other times they are proved at the ij-
component level. As an example of the latter, we prove an important
result that characterizes transposes of products.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 25 / 28

Theorem

If A ∈ Rm×p, and B ∈ Rp×n, then (AB)T = BTAT .

Proof.

If C = (AB)T , then

cij = [(AB)T]ij = [AB]ji =

p∑
k=1

ajkbki .

On the other hand, if D = BTAT , then

dij = [BTAT]ij =

p∑
k=1

[BT]ik [AT]kj =

p∑
k=1

bkiajk .

Since cij = dij for all i and j , it follows that C = D.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 26 / 28

Computations that involve complex matrices

The vector space of m × n complex matrices is designated by Cm×n. The
scaling, addition and multiplication of complex matrices corresponds
exactly to the real case. However, transposition becomes conjugate
transposition :

C = AH ⇒ cij = āji .

The vector space of complex n-vectors is designated by Cn. The dot
product of complex n-vectors x and y is prescribed by

s = xHy =
n∑

i=1

x iyi .

Finally, if A = B + iC ∈ Cm×n, the we designate the real and imaginary
parts of A by Re(A)=B and Im(A)=C respectively.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 27 / 28

References

Gene H. Golub and Charles F. Van Loan, Matrix Computations,
Third Edition, Hindustan Book Agency, 2007.

D.S. Watkins, Fundamentals of Matrix Computations, John Wiley &
Sons, New York, 1991.

P. Sam Johnson (NITK) Matrix Multiplication Problems Part - 1 September 15, 2014 28 / 28

