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Example of Gaussian Elimination

Given a system Ax =

 2 1 1
4 −6 0
−2 7 2

 u
v
w

 =

 5
−2
9

 = b.

First step: subtract 2 times the first equation from the second. The

elementary matirx E =

 1 0 0
−2 1 0
0 0 1

 should be pre-multiplied in

Ax = b, we get

EAx =

 1 0 0
−2 1 0
0 0 1

 2 1 1
4 −6 0
−2 7 2

 =

 1 0 0
−2 1 0
0 0 1

 5
−2
9

 .
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Our original matrix subtracts 2 times the first component from the second,
leaving the first and third components unchanged. After this step the new
and simple system (equivalent to the old) is just E (Ax) = Eb.

The matrix that leaves every vector unchanged is the identity matrix I ,
with 1‘s on the diagonal and 0‘s everywhere else. The matrix that
subtracts a multiple ` of row j from row i is the elementary matrix Eij ,
with 1‘s on the diagonal and −` in row i , column j .

For instance, E31 =

 1 0 0
0 1 0
−` 0 1

, then E31b =

 b1
b2

b3 − `b1

 .
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In the above example, there are three elimination steps:

1 subtract 2 times the first equation from the second

2 subtract −1 times the first equation from the third

3 subtract −1 times the second equation from the third.
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The result is an equivalent but simpler system, with a new coefficient
matrix U (upper triangular matrix)

Ux =

 2 1 1
0 −8 −2
0 0 1

 u
v
w

 =

 5
−12

2

 = c .

The elementary matrices for steps (i), (ii) and (iii) repectively are

E =

 1 0 0
−2 1 0
0 0 1

 ,F =

 1 0 0
0 1 0
1 0 1

G =

 1 0 0
0 1 0
0 1 1

.
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The result of all three steps GFEA = U, where

GFE = L =

 1 0 0
−2 1 0
−1 1 1

 is a lower triangular matrix.

We could multiply GFE together to find the single matrix that takes A to
U (and also takes b to c).

Thus LA = U.
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This is good, but the most important question is exactly the opposite.
How would we get from U back to A? How can we undo the steps of
Gaussian elimination.

A single step, say step (a), is not hard to undo. Instead of subtracting, we
add twice the first row to the second. (Not twice the second row to the
first!) The result of doing both the subtraction and the addition is to bring
back the identity matrix. 1 0 0

2 1 0
0 0 1

 1 0 0
−2 1 0
0 0 1

 =

 1 0 0
0 1 0
0 0 1

. If the elementary

matrix E has the number −` in the (i , j) position, then its inverse has +`
in that position. That matrix is denoted by E−1. Thus E−1 times E is the
identity matrix.
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The final problem is to undo the whose process at once, and the matrix
E−1F−1G−1 takes U back to A (E−1F−1G−1U = A). It is the link
between the A we start with and the U we reach. It is called L, (for
instance, L = E−1F−1G−1) because it is lower triangular. L has special
property: the entries below the diagonal are exactly the multipliers,
` = 2,−1 and −1. Thus A = L−1U.

Triangular factorization A = LU. If no row exchanges are required, the
orignial matrix A can be written as a product A = LU. The matrix L is
lower triangular, with 1‘s on the diagonal and the multipliers `ij (taken
from elimination) below the diagonal. U is the upper triangular matrix
which appears after forward elimination and before back-substitution; its
diagonal entries are the pivots.

The rule is that the matrix L, applied to U, brings back A.
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One linear system = two triangular system

When L and U are known, A could be thrown away. We go from b to c by
forward elimination (that uses L) and we go from c to x by
back-substitution (that uses U). We can and should do without A, when
its factors have been found. (A = Lu, b = Ax = LUx implies
L−1Ax = L−1b = c).

In matrix terms, elimination splits Ax = b into two triangular systems:
first Lc = b and then Ux = c. This identical to Ax = b. Pre-multiply
Ux = c by L to give LUx = Lc , which is Ax = b. Each triangular system
can be solved in n2/2 steps. The solution for any new right side b′ can be
found in only n2 operations. That is far below the n3/3 steps needed to
factor A on the left hand side.
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The triangular factorization is often written A = LDU, where L and U
have 1‘s on the diagonal and D is the diagonal matrix of pivots.

It is conventional, although completely confusing, to go on denoting this
new upper triangular matrix by the same letter U. Whenever you see
LDU, it is understood that U has 1’s on the diagonal - in other words that
each row was divided by the pivot. Then L and U are treated evenly. An

example for A =

(
1 2
3 4

)
is

A =

(
1
3 1

)(
1 2
−2

)
=

(
1
3 1

)(
1
−2

)(
1 2

1

)
= LDU.

That has the 1’s on the diagonals of L and U, and the pivots 1 and −2 in
D.
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Unique triangular factorization

If A = L1D1U1 and A = L2D2U2, where the L‘s are lower triangular with
unit diagonal, the U‘s are upper triangular with unit diagonal, and the D‘s
are diagonal matrices with no zeros on the diagonal, then

L1 = L2,D1 = D2,U1 = U2.

The LDU factorization and the LU factorization are uniquely determined
by A.
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Row exchanges and permutation matrices.

We have to face a problem that the number we expect to use as a pivot
might be zero. This could occur in the middle of a calculation, or it can
happen at the very beginning (in case a11 = 0.)

A simple example is

(
0 2
3 4

)(
u
v

)
=

(
b1
b2

)
. The difficulty is clear,

no multiple of the first equation will remove the coefficient 3.
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The remedy is equally clear. Exchange the two equations, moving the
entry 3 up into the pivot. To express this in matrix terms, we need to find
the permutation matrix that produces the row exchange. It is

P =

(
0 1
1 0

)
and multiply by P does exchange the rows.

The next difficult case is that a zero in the pivot location raises two
possibilites: the trouble may be easy to fix, or it may be serious.

This is decided by looking below the zero. If there is a nonzero entry lower
down in the same column, then a row exchange is carried out; the nonzero
entry becomes the needed pivot, and estimation can get going again.
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In the example A =

 0 a b
0 0 c
d e f

, everything depends on the number d .

If d = 0, the problem is incurable and matrix is singular.

There is no hope for a unique solution. If d is not zero, an exchange of

rows 1 and 3, permutation matrix P13 =

 0 0 1
0 1 0
1 0 0

, will move d into

the pivot, and stage 1 is complete. However the next pivot position also
contains a zero.

The number a is now below it (the e above is useless) and if a is not zero,

then another row exchange is callef for. P23 =

 1 0 0
0 0 1
0 1 0

 (exchange of

rows 2 and 3).
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There is a permutation matrix that will do both of the row exchanges at
once, which is the product of the two separate permutaions,

P23P13 = P =

 0 0 1
1 0 0
0 1 0

 (first exchange rows 1 and 3, then exchange

rows 2 and 3).

The theory of Gaussian elimination can be summarized as follows:
In the nonsingular case, there is a permutation matrix P that reorders the
rows of A to avoid zeros in the pivot positions. In this case

(a) Ax = b has a unique solution

(b) it is found by elimination with row exchanges

(c) with the rows reordered in advance. PA can be factored into LU.

In singular case, no reordering can produce a full set of pivots.

P. Sam Johnson (NITK) Matrices and Gaussian Elimination : Part 2 August 27, 2014 15 / 23



Caution about L

Suppose elimination subtracts row 1 from row 2, creating `21 = 1. Then
suppose it exchanges rows 2 and 3. If that exchange is done in advance,
the multiplier will change to `31 = 1 in PA = LU.

A =

 1 1 1
1 1 3
2 5 8

→
 1 1 1

0 0 2
0 3 6

→
 1 1 1

0 3 6
0 0 2

 = U.

With the rows exchanged, we recover LU - but now `31 = 1 and `21 = 2.

P =

 1 0 0
0 0 1
0 0 1

 and L =

 1 0 0
2 1 0
1 0 1

 and PA = LU.
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Inverse

The matrix is invertible if there exists a matrix B such that BA = I and
AB = I . There is at most one such B, called the inverse of A and
denoted by A−1: A−1A = I and AA−1 = I .

A product AB of invertible matrices has an inverse. It is found by
multiplying the individual inverses in reverse order: (AB)−1 = B−1A−1.

Consider the equation AA−1 = I . If it is taken a column at a time, that
equation determines the column of A−1. The first column of the identity
matrix I is the product of A and the first column of A−1.
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Consider a square matrix of order 3. Let x1, x2, x3 be the columns of A−1.

Then Ax1 = e1,Ax2 = e2,Ax3 = e3. Thus we have three systems of
equations (or, in general n systems) and they all have the same coefficient
matrix A.

The right sides are different, but it is possible to carry out elimination on
all systems simultaeously. This is called the Gauss-Jordan method.
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Instead of stopping at U and switching to back-substitution, it continues
by subtracting multiplies of a row, from the rows above. It produces zeros
above the diagonal as well as below, and when it reaches the identity
matrix we have found A−1.

The example keeps all three columns e1, e2, e3, and operates on rows of
length six: [A e1 e2 e3] becomes

 2 1 1 1 0 0
4 −6 0 0 1 0
−2 7 2 0 0 1

 =

 2 1 1 1 0 0
0 −8 −2 −2 1 0
0 0 1 −1 1 1

 = [U L−1]
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The first half of elimination has gone from A to U, and now the second
half will go from U to I . Creating zeros above the pivots in the matrix, we

reach A−1: The matrix [U L−1] =

 2 1 0 2 −1 −1
0 −8 0 −4 3 2
0 0 1 −1 1 1


becomes 1 0 0 12

16
−5
16

−6
16

0 1 0 4
8

−3
8

−2
8

0 0 1 −1 1 1

 = [I A−1]

At the last step, we divided through by the pivots. The coefficient matrix
in the left half became the identity. Since A went to I , the same
operations on the right half must have carried I into A−1.

Therefore we have computed the inverse. The final operation count for
computing A−1 is n3/6 + n3/3 + n(n2/2) = n3.
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Transpose

The transpose of a lower triangular matrix is upper triangular. The
transpose of AT brings us back to A.

If we add two matrices A and B and then transpose the result is the same
as first transposing and then adding: (A + B)T = AT + BT . Also,
(AB)T = BTAT and (A−1)T = (AT )−1.

A special class of matrices, probably the most important class of all: A
symmetric matrix is a matrix which equals its own transpose; AT = A.
The matric is necessarily square, and each entry on one side of the
diagonal equals its “mirror image” on the other side aij = aji .
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If A is symmetric, then A−1 is symmetric (if A−1 exits). Symmetric
matrices appear in every subject whose laws are fair. “Each action has an
equal and opposite reaction”, and the entry which gives the action of i
onto j is matched by the action of j onto i : The work of elimination is cut
essientially in last by symmetry, from n3/2 to n3/6.

LDU Factorization for Symmetric Matrices. If A is symmetric, and if it
can be factored into A = LDU without row exchanges to destroy the
symmetry, then the upper triangular U is the transpose of the lower
triangular L. The factorization becomes A = LDLT .
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