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Definition

Let A be a m × n matrix. Then the column space of A is C(A) is

C(A) := {Ax : x ∈ Rn}

and the row space of A is

R(A) := {yTA : y ∈ Rm}.

We call dim(R(A)) the row rank of A and dim(C(A)) the column
rank of A.

We refer to a basis of C(A) consisting of columns of A as a column
basis. A row basis is defined similarly.
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Matrix Multiplication

Notation. Ai∗ denotes the i-th row of A and A∗j denotes the j-th column
of A.

Let A,B,C be matrices of orders m × n, n × p, and p × q respectively.
Then

1 (AB)ij = Ai∗B∗j ,

2 (AB)i∗ = Ai∗B,

3 (AB)∗j = AB∗j ,

4 (ABC )ij = Ai∗BC∗j .

5 For any m × n matrix A, we have Ai∗ = eTi A and A∗j = Aej .
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If A has column rank r , then

any r linearly independent columns of A form a basis for C(A),

every maximal linearly independent set of columns of A contains
exactly r vectors,

any r columns of A which generate C(A) form a basis of C(A).

Theorem

For any matrix A, the row rank of A equals the column rank of A.

Proof. Let A be a m × n matrix with row rank r and column rank s. If
A = 0, then R(A) = {0} and C(A) = {0}, so r = s = 0 and we are done.

Let B = [x1 : x2 : · · · : xs ] be an m × s matrix whose columns form a basis
of C(A). Then for each j = 1, 2, . . . , n, each column of A, A∗j is a linear
combination of the columns of B, so there exists an s × 1 vector yj such
that A∗j = Byj .
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Now

A = [A∗1 : · · · : A∗n] = [By1 : · · · : Byn]

= B[y1 : · · · : yn] = BC

where C = [y1 : · · · : yn]. Note that C is of size s × n.

Since A = BC , Ai∗ = Bi∗.C , and each row of A is a linear combination of
the rows of C . Thus R(A) ⊆ R(C ).

Taking dimensions, we get r ≤ row rank(C ).

As C has only s rows, row rank(C ) ≤ s. Hence r ≤ s.
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Interchanging the roles of row rank and the column rank. Let
C = [y1 : · · · : yr ]T be an r × n matrix whose rows form a basis of R(A).
Then for each i = 1, 2, . . . , n, each row of A, Ai∗ is a linear combination of
the rows of C , so there exists an r × 1 vector xi such that Ai∗ = xiC .

A = [A1∗ : · · · : An∗]T = [x1C : · · · : xnC ]T

= [x1 : · · · : xn]TC = BC

where B = [x1 : · · · : xn]T . Note that C is of size s × n.

Since A = BC , A∗j = B.C∗j , and each column of A is a linear combination
of the columns of C . Thus C(A) ⊆ C(B).

Taking dimensions, we get s ≤ column rank(B). As B has only r columns,
column rank(B) ≤ r . Hence s ≤ r . Thus r = s.
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Definition

The rank of a matrix A is the common value of the row rank of A and the
column rank of A and is denoted by ρ(A).

The rank of an m × n matrix obviously lies between 0 and min(m, n).

Conversely, given any non-negative integer r ≤ min(m, n), there exists
an m × n matrix A with rank r .

Let A be a m × n matrix of rank r and B a submatrix of A. By
considering row rank (column rank) if B is obtained from A by
omitting only some rows (columns). Any submatrix can be obtained
by omitting some rows and then some columns. Then ρ(B) ≤ ρ(A).
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Definition

An m × n matrix A is said to be of full row rank if its rows are linearly
independent, that is, it its rank is m. Similarly A is said to be of full
column rank if its columns are linearly independent.

A left inverse of a matrix A is any matrix B such that BA = I . A right
inverse of A is any matrix C such that AC = I .

A matrix B is said to be an inverse of A if it is both a left inverse and a
right inverse of A.
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Theorem

Let A be a m × n matrix over R. Then the following statements are
equivalent.

1 A has a right inverse.

2 Right cancellation law: XA = YA⇒ X = Y .

3 XA = 0⇒ X = 0.

4 A is of full row rank.

5 The linear transformation f : x 7→ Ax is onto: C(A) = Rm.

Question: If A has a right inverse, how many right inverses does A have ?
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Theorem

Let A be a m × n matrix over R. Then the following statements are
equivalent.

1 A has a left inverse.

2 Left cancellation law: AX = AY ⇒ X = Y .

3 AX = 0⇒ X = 0.

4 A is of full column rank.

5 The linear transformation f : x 7→ Ax is one-to-one: R(A) = Rn.

A matrix B is a left inverse of a matrix A iff BT is a right inverse of
AT .

If B and C are left inverses of A, then αB + (1− α)C is also a left
inverse of A.
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If a matrix A has a left inverse B and a right inverse C , then

A is square,

B = C ,

A has a unique left inverse, a unique right inverse and a unique
inverse.

If a matrix A has an inverse, then A−1 is unique, A is square and
AA−1 = A−1A = I .

Theorem

Let A be a square matrix of order n. Then the following statements are
equivalent:

1 A has a right inverse

2 rank of A is n

3 A has a left inverse

4 A has an inverse.
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Definition

A square matrix A is said to be non-singular if it has an inverse. A square
matrix which does not possess an inverse is said to be singular.

1 AB is non-singular iff both A and B are non-singular.

2 If A is non-singular and k is a positive integer, then Ak is non-singular
and its inverse is (A−1)k .

3 The sum of two non-singular matrices need not be non-singular.

4 Let P be a permutation matrix. Then P is non-singular and
P−1 = PT .

5 If P is a permutation matrix obtained from I by interchanging two
rows, P−1 = P.

P. Sam Johnson (NITK) Existence of Left/Right/Two-sided Inverses September 19, 2014 12 / 26



Left and Right Inverses

We know that if A has a left-inverse (BA = I ) and a right-inverse
(AC = I ), then the two inverses are equal: B = B(AC ) = (BA)C = C .
Now, from the rank of a matrix, it is easy to decide which matrices
actually have these inverses.

Roughly speaking, an inverse exists only when the rank is as large as
possible. In other words, the matrix has an inverse if A has to have to full
rank, rank(A) = min{m, n}.
The rank always satisfies r ≤ m and also r ≤ n. As m by n matrix cannot
have more than m independent rows or n independent columns. When
r = m there is a right-inverse, and when r = n there is a left-inverse.

In the first case AX = b always has a solution. In the second case the
solution (if it exists) is unique. Only a square matrix can have both r = m
and r = n, and therefore only a square matrix can achieve both existence
and uniqueness. Only a square matrix has a two-sided inverse.
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Existence and Uniqueness

Existence. The system Ax = b has at least one solution x for every b iff
the columns span Rm; then r = m. In this case there exists an n by m
right inverse C such that AC = Im, the identity matrix of order m. This is
possible only if m ≤ n.

Uniqueness. The sytem Ax = b has at most one solution x for every b
iff the columns are linearly independent; then r = n. In this case there
exists an n by m left-inverse B such that BA = In, the identity matrix of
order n. This is possible only if m ≥ n.

In the first case, one possible solution is x = Cb, since then
Ax = ACb = b. But there will be other solutions if there are other
right-inverses.

In the second case, if there is a solution to Ax = b, it has to be
x = BAx = Bb. But there may be no solution.

P. Sam Johnson (NITK) Existence of Left/Right/Two-sided Inverses September 19, 2014 14 / 26



Simple Formulas for Left and Right Inverses

There are simple formulas for left and right inverses, if they exist:
B = (ATA)−1AT and C = AT (AAT )−1. Certainly BA = I and AB = I .

What is not so certain is that ATA and AAT are actually invertible. We
show that ATA does have an inverse if the rank is n, and AAT has an
inverse when the rank is m. Thus the formulas make sense exactly when
the rank is as large as possible, and the one-sided inverses are found.

There is also a more basic approach. We can look, a column at a time, for
a matrix C such that AC = I or A[x1 x2 · · · xm] = [e1 e2 · · · em]. Each
column of C , when multiplied by A, gives a column of the idenity matrix.
To solve Axi = ei we need the coordinate vectors ei to be in the column
space. If it contains all those vectors, the column space must be all of Rm!
Its dimension (the rank) must be r = m. This is the “existence case,”
when the columns span Rm.
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Example

Consider a simple 2 by 3 matrix of rank 2: A =

(
4 0 0
0 5 0

)
. Since

r = m = 2, the theorem guarantees a right-inverse C :

AC =

(
4 0 0
0 5 0

) 1/2 0
0 1/2
a b

 =

(
1 0
0 1

)
.

In fact, there are many right-inverse; the last row of C is completely
arbitrary. This is a case of existence but no uniqueness. The matrix A has
no left-inverse because the last column of BA is certain to be zero, and
cannot agree with the 3 by 3 identity matrix.
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The transpose of A yields an example in the opposite direction, with
infinitely many left-inverses:

(
1/4 0 c

0 1/5 d

) 4 0
0 5
0 0

 =

(
1 0
0 1

)
.
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Now it is the last column of B that is completely arbitrary. This is typical
of the “uniqueness case,” when the n columns of A are linearly
independent. The rank is r = n. There are no free variables, since
n − r = 0, so if there is a solution it will be the only one. You can see
when this example has a solution:

 4 0
0 5
0 0

 =

(
x1
x2

)
=

 b1
b2
b3

 is solvable if b3 = 0.

When b3 is zero, the solution (unique!) is x1 = 1
4b1, x2 = 1

5b2.
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For a rectangular matrix, it is not possible to have both existence and
uniqueness. If m is different from n, we cannot have r = m and r = n. A
square matrix is the opposite. If m = n, we cannot have one property
without the other.

A square matrix has a left-inverse iff it has a right-inverse. There is only
one inverse, namely B = C = A−1. Existence implies uniqueness and
uniqueness implies existence, when the matrix is square. The condition for
this invertibility is that the rank must be as large as possible: r = m = n.

We can say that in another way: For a square matrix A of order n to be
nonsingular, each of the following conditions is a necessary and sufficient
test:

1 The columns span Rn, so Ax = b has at least one solution for every b.

2 The columns are independent, so Ax = 0 has only the solution x = 0.
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A Typical Application: Vandermonde’s matrix

Consider all polynomials

P(x) = a1 + a2x + a3x
2 + · · ·+ anx

n−1

of degree n − 1.

The only such polynomial that vanishes at n given points x1, . . . , xn is the
zero polynomial P(x) ≡ 0.

No other polynomial of degree n− 1 can have n roots. This is a statement
of uniqueness, and it implies a statement of existence: Given any values
b1, . . . , bn, there exists a polynomial of degree n − 1 interpolating these
values: P(xi ) = bi , i = 1, . . . , n.
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The point is that we are dealing with a square matrix; the number of
coefficients in P(x) (which is n) matches the number of equations. In fact
the equations P(xi ) = bi are the same as


1 x1 x21 · · · xn−2

1 xn−1
1

1 x2 x22 · · · xn−2
2 xn−1

2
...

...
...

. . .
...

...
1 xn x2n · · · xn−2

n xn−1
n



a1
a2
...
an

 =


b1
b2
...
bn

 .
The coefficient matrix A is n by n, and is known as Vandermonde’s matrix.
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Since Ax = 0 has only the solution x = 0 (in other words P(xi ) = 0 is only
possible if P ≡ 0), it follows that A is nonsingular.

Thus Ax = b always has a solution - a polynomial can be passed through
any n values bi at distinct points xi .

The determinant of the Vandermonde’s matrix is
∏

1≤i<j≤n

(xj − xi ). The

determinant is nonzero because all xi ’s are distinct.

P. Sam Johnson (NITK) Existence of Left/Right/Two-sided Inverses September 19, 2014 22 / 26



Rank-one Matrices

Finally comes the easiest case, when the rank is as small as possible
(except for the zero matrix with rank zero). One of the basis themes of
mathematics is, given something complicated, to show how it can be
broken into simple pieces.

For linear algebra the simple pieces are matrices of rank one, r = 1.

The following example is typical: A =


2 1 1
4 2 2
8 4 4
−2 −1 −1

 .

Every row is a multiple of the first row, so the row space is
one-dimensional.
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In fact, we can write the whole matrix in the following special way, as the
product of a column vector and a row vector:

A =


2 1 1
4 2 2
8 4 4
−2 −1 −1

 =


1
2
4
−1

 =
(

2 1 1
)
.

The product of a 4 by 1 matrix and a 1 by 3 matrix is a 4 by 3 matrix, and
this product has rank one. Note that, at the same time, the columns are
all multiples of the same column vector; the column space shares the
dimension r = 1 and reduces to a line.

The same thing will happen for any other matrix of rank one: Every
matrix of rank one has the simple form A = uvT . The rows are all
multiples of the same vector vT , and the columns are all multiples of the
same vector u. The row space and column space are lines.
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Storing Rank-One Matrix as a Matrix

If x , y 6= 0, then any matrix of the form B = xyT has rank one; that is, its
columns span a one-dimensional space. Conversely, any rank-one matrix B
can be represented in the form xyT .

Rank-one matrices arise frequently in numerical applications, and it is
important to know how to deal with them.

The first thing to note is that one does not store a rank-one matrix as a
matrix. For example, if x and y are n-vectors, then the matrix xyT

requires n2 locations to store, as opposed to 2n locations to store x and y .

To get some idea of the difference, suppose that n = 1000. Then xyT

requires one million (10002) words to store as a matrix, as opposed to
2000 to store x and y individually - the storage differs by a factor of 500.
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Product of Rank-One Matrix and Column Vector

If we always represent a rank-one matrix B = xyT by storing x and y , the
question arises of how we perform matrix operations with B - how, say, we
can compute the matrix-vector product c = Bb?

An elegant answer to this question may be obtained from the equation
c = Bb = (xyT )b = x(yTb) = (yTb)x , in which the last equality follows
from the fact that yTb is a scalar.

This equation leads to the following algorithm.

1 Compute z = yTb

2 Compute c = zx .

This algorithm requires 2n multiplications and n − 1 additions. This
should be contrasted with the roughly n2 multiplicatons and additions
required to form an ordinary matrix vector product.
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