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Linear Dependent Set

For any vectors u1, u2, . . . , un we have that 0u1 + 0u2 + · · ·+ 0un = 0.
This is called the trivial representation of 0 as a linear combination of
u1, u2, . . . , un.

This motivates a definition of “linear dependence”. For a set to be
linearly dependent, there must exist a non-trivial representation of 0 as a
linear combination of vectors in the set.

Definition

A subset S of a vector space V is called linearly dependent if there exist
a finite number of distinct vectors v1, v2, . . . , vn in S and scalars
a1, a2, . . . , an, not all zero, such that

a1v1 + a2v2 + · · ·+ anvn = 0.

Note that the zero on the right is the zero vector, not the number zero.
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Any set containing the zero vector is linearly dependent.

If m > n , a set of m vectors in Rn is dependent.

A subset S of a vector space V is then said to be linearly independent if
it is not linearly dependent.

In other words, a set is linearly independent if the only
representations of 0 as a linear combination of its vectors are trivial
representations.
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More generally, let V be a vector space over R, and let {vi : i ∈ I} be a
family of elements of V . The family is linearly dependent over R if there
exists a family {aj : j ∈ J} of elements of R, not all zero, such that∑

j∈J ajvj = 0, where the index set J is a nonempty, finite subset of I .

A set {vi : i ∈ I} of elements of V is linearly independent if the
corresponding family {vi : i ∈ I} is not linearly dependent.

Exercise

A family is dependent if a member is in the linear span of the rest of the
family.
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Spanning a Subspace

Definition

A set of vectors S spans a subspace W if W = 〈S〉 ; that is, if every
element of W is a linear combination of elements of S.

In other words, we call the subspace W spanned by a set S if all
possible linear combinations produce the space W .

If S spans a vector space V (we denote Sp(S) = V ), then every set
containing S is also a spanning set of V .
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Definition

A set B of vectors in a vector space V is said to be a basis if B is linearly
independent and spans V .

From the definition of a basis B, every element of V can be written as
linear combination of elements of B, in one and only way.

Definition

The number of elements of a basis B of a vector space V is called the
dimension of V .

Examples

1 The coordinate vectors e1, e2, . . . , en coming from the identity matrix
spans Rn. Hence the dimension of Rn is n

2 The vector space P(x) of all polynomials in x over R has the
(infinite) subset 1, x , x2, . . . as a basis, so P(x) has infinite dimension.
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In a subspace of dimension k , no set of more than k vectors can be
independent, and no set of fewer than k vectors can span the space.

Any linearly independent set in V can be extended to a basis, by
adding more vectors if necessary.

Any spanning set in V can be reduced to a basis, by discarding
vectors if necessary.

Hence basis is a maximal linearly independent set, or a minimal
spanning set.

P. Sam Johnson (NITK) Linear Independence, Basis, Dimension & Four Fundamental SubspacesSeptember 2, 2014 7 / 23



Four Fundamental Subspaces

Let A be an m × n matrix of real entries.

1 The column space of A, C(A) is the space spanned by columns of A.
That is,

C(A) := {Ax : x ∈ Rn}.
2 The null space of A, N (A) is the solution set of the matrix equation

Ax = 0. That is,

N (A) = {x ∈ Rn : Ax = 0}.

3 The row space of A, is the space spanned by rows of A. It is same as
the column space of AT . That is,

R(AT ) := {yTA : y ∈ Rm}.

4 The left nullspace of A is the nullspace of AT . That is,

N (AT ) := {y ∈ Rm : yTA = 0}.
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Echelon Form

A matrix that has undergone Gaussian elimination is said to be in row
echelon form or, more properly, “reduced echelon form” or
“row-reduced echelon form”. Such a matrix has the following
characteristics :

1 All zero rows are at the bottom of the matrix.

2 The leading entry of each nonzero row after the first occurs to
the right of the leading entry of the previous row.

3 The leading entry in any nonzero row is 1.

4 All entries in the column above and below a leading 1 are zero.
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The Row Space

Use Gaussian elimination to transform [A|b] into echelon form [U|c].
Transforming to the echelon matrix means that we are taking linear
combinations of the rows of a matrix A to come up with the matrix U.

We could reverse the process and get back to A, by row operations
again. Therefore, the row space of A equals the row space of U.

If 2 matrices are row equivalent, then their row spaces are the same.

The nonzero rows (rewritten as column vectors) of the matrix U form
a BASIS for the row space.
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Example for a basis of the row space of A

U =

 1 2 1 2
0 0 0 1
0 0 0 0

 is the echelon matrix of A =

 1 2 1 2
1 2 1 3
3 6 3 7

 .

A basis for the row space of A is the set of non-zero rows of U (rewritten
as column vectors). In our example, a basis for the row space is


1
2
1
2

 ,


0
0
0
1


 .

Notice the number of elements in the basis, which is the number of
non-zero rows in U, is just the number of pivots.
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The Column Space

The column space of a matrix consists of ALL linear combinations of
the columns of the matrix.

Reduce A to the echelon matrix U, by row operations.

Find the pivot variables xi1 , xi2 , . . . , xir where r = rank(A) is the total
number of pivots. A basis for the column space of A is the set of
columns i1, i2, . . . , ir in the original matrix A.

That is, the columns of the original matrix corresponding to those
columns containing PIVOTS form a BASIS for the column space of
the matrix.

Notice the number of elements in the basis, which is the number of
non-zero rows in U, is just the number of pivots. This means the
column space and the row space of a matrix always have the
same dimension.
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Example for a basis of the column space of A

U =

 1 2 1 2
0 0 0 1
0 0 0 0

 is the echelon matrix of A =

 1 2 1 2
1 2 1 3
3 6 3 7

 .

Since the pivot variables of A are x1 and x4, a basis for the column space is
 1

1
3

 ,

 2
3
7

 .

Caution. We had to choose columns from the original matrix A, because
Gaussian elimination changes the column picture at each step.

To see this in our example, just note that the columns of U all have a zero
in the third entry: if these spanned the column space of A then every
column of A would also have to have zero in the third entry–which is false!
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Nullspace

The system Ax = 0 is reduced to Ux = 0, where U is an echelon
matrix, and this process is reversible.

The nullspace of A is the same as the nullspace of U.

Find the free variables xj1 , xj2 , . . . , xjn−r where n − r is the number of
columns of A without a pivot. There is a basis for the nullspace of A,
with one vector associated to each free variable. Taking each free
variable one at a time, set that free variable as 1 and the other free
variables as 0. Then solve Ux = 0 for the vector x with this choice
and put x in the basis. Repeat for each free variable.

The n − r “special solutions” to Ux = 0 provides a BASIS for the
nullspace.
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Example for a basis of the null space of A

U =

 1 2 1 2
0 0 0 1
0 0 0 0

 is the echelon matrix of A =

 1 2 1 2
1 2 1 3
3 6 3 7

 .

The free variables are x2 and x3. Taking x2 = 1, x3 = 0 and x2 = 0, x3 = 1
and solve Ux = 0 for each choice. A basis for the nullspace of is


−2
1
0
0

 ,


−1
0
1
0


 .
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Left Nullspace

Use Gaussian elimination to transform [A|b] into echelon form [U|c].

A basis for the left nullspace of A has m − r vectors, which is the
number of zero rows in U.

For each zero row, put a vector in the basis whose entries are the
coefficients of the vector b in the entry of c corresponding to the zero
row.
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Example for a basis of the left null space of A

[A | b] =

 1 2 1 2 b1

1 2 1 3 b2

3 6 3 7 b3

→
 1 2 1 2 b1

0 0 0 1 b2 − b1

0 0 0 0 b3 − 2b1 − b2

 = [U | c].

There is one zero row of U. As an equation the row represents
0 = −2b1 − b2 + b3 (note we listed the bi s in order). Thus a basis for the
left nullspace is 

 −2
−1
1

 .

In general, the number of elements in this basis will equal the number of
zero rows.
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Dimensions of Four Fundamental Subspaces

Let A be m × n with rank r . Using the bases above, we observe the
following:

dim R(A) = dim R(AT ) = r (the number of pivots).

dim N(A) = n − r (the number of free columns).

dim N(AT ) = m − r (the number of zero rows).

Notice that the column space and the row space of a matrix have the
same dimension (even though the vectors in each subspace live in a
different ambient space, Rm and Rn.)

The nullspace and row space live in Rn ; the left nullspace and column
space live in Rm.
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Fundamental Theorem of Linear Algebra (Part I)

There is an important relationship between the dimensions of the
subspaces in each of these pairs of subspaces, which is shown by the
following theorem.

Theorem (Fundamental Theorem of Linear Algebra (Part I))

Let A be m × n with rank r . Then

dim R(AT ) + dim N(A) = n.

dim R(A) + dim N(AT ) = m.

We call the dimension of N(A), nullity of A.

The first equation is also called the rank-nullity law, or, rank-nullity
theorem because rank A = dim R(AT ).
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To Temember Their Dimensions !

To remember what are the dimensions of the four fundamental subspaces,
it is best just to think about where the bases for each subspace comes
from :

The bases for the column space and row space come from the pivots,
so the dimension of each of these subspaces is the rank of the matrix.

The basis for the nullspace comes from the free columns, so the
dimension of the nullspace is the number of free columns.

The basis for the left nullspace is obtained from the zero rows, so the
dimension of the left nullspace is the number of zero rows.
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Figure : Nullspace and Row Space in Rn
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Figure : Left Nullspace and Column Space in Rm
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