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Overview

We derive and analyse numerical methods for evaluating definite integrals.
The integrals are mainly of the form

I(f ) =

∫ b

a
f (x)dx .

Most such integrals cannot be evaluated explicitly. It is often faster to
integrate them numerically rather than evaluating them exactly using a
complicated antiderivative of f (x).

The approximation of I(f ) is usually referred to as numerical integration
or quadrature.
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Overview

There are many numerical methods for evaluating

I(f ) =

∫ b

a
f (x)dx ,

but most can be made to fit within the following simple framework.

For the integrand f (x), find an approximating family {fn(x) : n ≥ 1} and
define

In(f ) =

∫ b

a
fn(x) dx = I(fn).

We usually require the approximations fn(x) to satisfy

‖f − fn‖∞ → 0 as n→∞.
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Overview

For the error,

En(f ) = I(f )− In(f )

=

∫ b

a
[f (x)− fn(x)] dx .

Hence

|En(f )| ≤
∫ b

a
|f (x)− fn(x)| dx

≤ (b − a) ‖f − fn‖∞.

Most numerical integration methods can be viewed within this framework.
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Overview

Most numerical integrals In(f ) will have the following form when they are
evaluated :

In(f ) =
n∑

j=1

wj ,nf (xj ,n) for n ≥ 1.

The coefficients wj ,n are called the integration weights or quadrature
weights; and the points xj ,n are the integration nodes, usually chosen in
[a, b].

Standard methods have nodes and weights that have simple formulas or
else they are tabulated in tables that are readily available.
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Overview

Thus there is usually no need to explicitly construct the functions fn(x) of

I(fn) =

∫ b

a
fn(x) dx

although their role in defining In(f ) may be useful to keep in mind.

Most numerical integration formulas are based on defining fn(x) in

I(fn) =

∫ b

a
fn(x) dx

by using polynomial or piecewise polynomial interpolation.

Formulas using such interpolation with evenly spaced node points are
derived and discussed.
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Quadrature Formula

The process of evaluation a definite integral from a set of tabulated values
of the integrand f (x) is called numerical integration. This process when
applied to a function of a single variable is known as quadrature.

The problem of numerical integration, like that of numerical differentiation
is solved by representing f (x) by an interpolation formula and then
integrating it between the given limits.

In this way, we can derive quadrature formulae for approximate integration
of a function defined by a set of numerical values only.
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Newton-Cotes Quadrature Formula

Let

I =

∫ b

a
f (x)dx

where f (x) takes the values y0, y1, . . . , yn for x = x0, x1, . . . , xn.

Let us divide the interval [a, b] into n-subintervals of width h so that
x0 = a, x1 = x0 + h, . . . , xn = x0 + nh = b. Then

I =

∫ x0+nh

x0

f (x)dx

= h

∫ h

0
f (x0 + ph)dp putting x = x0 + ph

= h

∫ h

0

[
y0 + p M y0 +

p(p − 1)

2!
M2 y0 + . . .

]
dp

(by Newton’s forward interpolation formula)
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Newton-Cotes Quadrature Formula

Integration term by term, we obtain,

∫ x0+nh

x0

f (x)dx = nh

[
y0 +

n

2
M y0 +

n(2n − 3)

12
M2 y0 +

n(n − 2)2

24
M3 y0

+

(
n4

5
−

3n2

2
+

11n2

3
− 3n

)
M4 y0

4!
(1)

+

(
n5

6
− 2n4 +

35n3

4
−

50n2

3
+ 12n

)
M5 y0

5!

+

(
n6

7
−

15n5

6
+ 15n4 −

225n3

4
+

274n2

3
− 60n

)
M6 y0

6!
+ · · ·

]

This is known as Newton-Cotes quadrature formula. From this general
formula, we deduce the following important quadrature rule by taking
n = 1, 2, 3, . . . .
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Trapezoidal Rule

Putting n = 1 in (1) and taking the curve through (x0, y0) and (x1, y1) as
a straight line.

That is, approximate y by a polynomial of first order, so that
differences of order higher than first becomes zero, we get∫ x0+h

x0

f (x)dx = h

(
y0 +

1

2
M y0

)
=

h

2
(y0 + y1).

Similarly ∫ x0+2h

x0+h
f (x)dx = h

(
y1 +

1

2
M y1

)
=

h

2
(y1 + y2)

...∫ x0+nh

x0+(n−1)h
f (x)dx =

h

2
(yn−1 + yn).
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Trapezoidal Rule

Adding these n integrals, we obtain∫ b=x0+nh

a=x0

f (x)dx =
h

2

[
(y0 + yn) + 2(y1 + y2 + · · ·+ yn−1)

]
.

This is known as the Trapezoidal rule.

The area of each strip (trapezium is
found separately. Hence the area under
the curve y = f (x), between the lines
x = x0, x = xn is approximately equal to
the sum of the area of the n trapeziums.
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Error in Trapezoidal Rule

The simple trapezoidal rule is based on approximating f (x) by the straight
line joining (a, f (a)) and (b, f (b)).

By integrating the formula for this straight line, we obtain the
approximation

I1(f ) =

[
f (a) + f (b)

2

]
(b − a).

Of course, this is the area of the trape-
zoid shown in the graph.
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Error in Trapezoidal Rule

Note that the equation of the line joining (a, f (a)) and (b, f (b)) is

y =
(b − x)f (a) + (x − a)f (b)

b − a
.

We further assume that f (x) is twice continuously differentiable on [a, b].
The error for the trapezoidal rule is

E1(f ) =

∫ b

a
f (x) dx −

{
f (a) + f (b)

2
(b − a)

}
=

∫ b

a
(x − a)(x − b) f [a, b, x ] dx .

Here f [a, b, x ] is the 3-rd order Newton divided difference of f about the
nodes a, b and x .
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Error in Trapezoidal Rule

Using the integral mean value theorem

E1(f ) = f [a, b, ξ]

∫ b

a
(x − a)(x − b) dx for some ξ ∈ [a, b]

=

[
1

2
f ′′(η)

][
−1

6
(b − a)3

]
for some η ∈ [a, b].

Thus the error is

E1(f ) =
−(b − a)3

12
f ′′(η) for some η ∈ [a, b].

If the value b − a is not sufficiently small, the trapezoidal rule is not of
much use.

For such case, we break the integral into a sum of integrals over smal
subintervals, and then apply the trapezoidal rule to each of these integrals.
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Error in Composite Trapezoidal Rule

Let n ≥ 1, h = b−a
n , and xj = a + jh for j = 0, 1, 2, . . . , n. Then

I(f ) =

∫ b

a
f (x) dx =

n∑
j=1

∫ xj

xj−1

f (x) dx

=
n∑

j=1

{(
h

2

)
[f (xj−1) + f (xj)]− h3

12
f ′′(ηj)

}
with xj−1 ≤ ηj ≤ xj .

The first terms in the sum can be combined to give the composite
trapezoidal rule,

In(f ) =
h

2
[f0 + 2(f1 + f2 + · · ·+ fn−1) + fn] n ≥ 1

with f (xj) ≡ fj .
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Error in Composite Trapezoidal Rule

The error in In(f ) is given by

En(f ) = I(f )− In(f ) =
n∑

j=1

−h3

12
f ′′(ηj) =

−h3

12

[
1

n

n∑
j=1

f ′′(ηj)

]
.

For the term in brackets,

min
a≤x≤b

f ′′(x) ≤ 1

n

n∑
j=1

f ′′(ηj) ≤ max
a≤x≤b

f ′′(x).

Since f (x) is continuous for a ≤ x ≤ b, it must attain all values between
its minimum and maximum at some point of [a, b]. Hence

f (η) = M for some η ∈ [a, b].
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Error in Composite Trapezoidal Rule

Thus we can write

En(f ) =
−(hn)h2

12
f ′′(η)

=
−(b − a)h2

12
f ′′(η)

for some η ∈ [a, b].

There is no reason why the subintervals [xj−1, xj ] must all have equal
length, but it is customary to first introduce the general principles involved
in this way.

Although this is also the customary way in which the method is applied,
there are situations in which it is desirable to vary the spacing of the nodes.
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Simpson’s 1/3-rule

Putting n = 2 in the Newton-Cotes general quadrature formula and taking
the curve through (x0, y0), (x1, y1) and (x2, y2) as a parabola, we get∫ x0+2h

x0

f (x)dx = 2h

(
y0+ M y0 +

1

6
M2 y0

)
=

h

3
(y0 + 4y1 + y2).

As the function y = f (x) in approximated on [x0, x1] by a polynomial of
degree two and it is passing through the points (x0, y0), (x1, y1) and
(x2, y2), the interval [x0, x0 + nh] should be divided into even number of
subintervals, that is , n has to be even.

P. Sam Johnson (NITK) Numerical Integration February 3, 2020 18/28



Simpson’s 1/3-rule

Thus,∫ b=x0+nh

a=x0

f (x)dx =
h

3

[
(y0 + yn) + 4(y1 + y3 + · · ·+ yn−1)

+2(y2 + y4 + · · ·+ yn−2)

]
.

This is known as the Simpson’s one-
third rule or Simpson’s rule and is most
commonly used.
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Error in Simpson’s 1/3-rule

Let us consider the simple Simpson rule

I2(f ) =
h

3

[
(f (a) + 4f

(
a + b

2

)
+ f (b)

]
where h =

b − a

2
.

For the error,

E2(f ) = I(f )− I2(f ) =

∫ n

a
(x − a)(x − c)(x − b)f [a, b, c , x ] dx .

If we further assume that f is four times continuously differentiable on
[a, b], we can apply the integral mean value theorem. Thus

E2(f ) =
−h5

90
f (4)(η) where η ∈ [a, b].

From this, we see that E2(f ) = 0 if f (x) is a polynomial of degree at most
three, even though quadratic interpolation is exact only if f (x) is a
polynomial of degree at most two. This results in Simpson’s rule being
much more accurate than the trapezoidal rule.
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Error in Composite Simpson’s 1/3-rule

For the error, as with the trapezoidal rule

En(f ) = I(f )− In(f ) =
−h5(n/2)

90

2

n

n/2∑
j=1

f (4)(ηj).

Since f is 4-times differentiable, we get

En(f ) =
h4(b − a)

180
f (4)(η) where η ∈ [a, b].
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Simpson’s 3/8-rule

Putting n = 3 in the general Newton-Cotes quadrature formula and taking
the curve through (xi , yi ), i = 0, 1, 2, 3 as a polynomial of third order,
we get ∫ x0+3h

x0

f (x)dx =
3h

8
(y0 + 3y1 + 3y2 + y3).

When n is a multiple of 3, we obtain∫ x0+nh

x0

f (x)dx =
3h

8

[
(y0 + y1) + 3(y1 + y2 + y4 + y5 + · · ·+ yn−1)

+2(y3 + y6 + · · ·+ yn−3)

]
,

which is known as Simpson’s 3/8-rule.
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Exercises

1. Evaluate ∫ 6

0

dx

1 + x2

by using

(a) Trapezoidal rule
(b) Simpson’s 1/3-rule
(c) Simpson’s 3/8-rule Weddle’s rule

and compare the results with its actual value.

2. Evaluate ∫ 1

0

x2

1 + x2
dx

by using Simpson’s 1/3- rule. Compare the error with the exact value.
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Exercises

3. Use the Trapezoidal rule to estimate the integral∫ 2

0
ex

2
dx

taking 10 sub-intervals.

4. Use Simpson’s 1/3-rule to find∫ 0.6

0
e−x

2
dx

by taking seven ordinates. Compare the approximate with the exact
value.

5. Using Simpson’s 3/8-th rule, compute the value of∫ 1.4

0.2
(sin x − log x + ex)dx .
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Applications

If the ordinates, x0, x1, . . . , xn represent equispace cross-sectional areas,
then Simpson’s rule gives the volume of a solid. As such Simpson’s rule is
very useful to civil engineers for calculating the amount of earth that must
be moved to fill a depression or make a dam.

Similarly if the ordinates denote velocities at equal intervals of time, the
Simpson’s rule gives the distance traveled.

Exercise

6. The velocity v(km/min) of a moped which starts from rest, in given at fixed intervals of

time t (min) as follows
t : 2 4 6 8 10 12 14 16 18 20
v : 10 18 25 29 32 20 11 5 2 0

Estimate approximately the distance covered in 20 minutes.
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Exercises
7. The velocity v of a particle at distance s from a point on its linear path is given by the

following table:

s(m) : 0 2.5 5.0 7.5 10 12.5 15 17.5 20
v(m/sec) : 16 19 21 22 20 17 13 17 9

Estimate the time taken by the particle to traverse the distance of 20 meters, using
Boole’s value.

8. A solid of revolution is formed by rotating about the x- axis, the area between the x- axis,
the lines x = 0 and x = 1 and a curve through the points with the following co-ordinates.

x : 0 0.25 0.5 0.75 1
y : 1 0.9896 0.9589 0.9089 0.8415

Estimate the volume of the solid formed using Simpson’s rule.

9. A river is 80 ft. wide. The depth d in feet at a distance x ft. from one bank is given by
the following table. Find approximately the area of the cross-section.

x : 0 10 20 30 40 50 60 70 80
y : 0 4 7 9 12 15 14 8 3
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Exercises
10. A body is in the form of a solid of revolution. The diameter D is cm. of its sections at

distances x cm. from on end are given below. Estimate the volume of the solid.

x : 0 2.5 5 7.5 10 12.5 15
D : 5 5.5 6 6.75 6.25 5.5 4

11. A rocket is launched from the ground. Its acceleration is registered during the first 80
seconds and is given in the table below. Using Simpson’s 1/3-rd rule, find the velocity of
the rocket at t = 80 seconds.

t(sec) : 6 10 20 30 40 50 60 70 80
f (cm/sec2) 30 31.63 33.34 35.47 37.75 40.33 43.23 46.69 50.67
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