Rank-Factorization of a Matrix

P. Sam Johnson

May 26, 2017

P. Sam Johnson (NITK) [Rank-Factorization of a Matrix](#page-20-0) May 26, 2017 1 / 21

4 日下

目

一本 語

÷ \rightarrow 2990

Every non-null matrix can be written as a product of two full rank matrices. Martrices which are of full rank (either full row rank or full column rank) have several nice properties.

4 日下

 Ω

化重 网络重

Let A be a $m \times n$ matrix. Then the **column space** of A is $C(A)$ is

$$
\mathcal{C}(A):=\{Ax:x\in F^n\}
$$

and the row space of A is

$$
\mathcal{R}(A) := \{y^T A : y \in F^m\}.
$$

- We call $dim(R(A))$ the row rank of A and $dim(C(A))$ the column rank of A.
- We refer to a basis of $C(A)$ consisting of columns of A as a **column** basis. A row basis is defined similarly.

Notation. A_{i*} denotes the *i*-th row of A and A_{*i} denotes the *j*-th column of A.

Let A, B, C be matrices of orders $m \times n$, $n \times p$, and $p \times q$ respectively. Then

- **1** $(AB)_{ij} = A_{i*}B_{*j}$
- **2** $(AB)_{i*} = A_{i*}B$,
- 3 $(AB)_{*j} = AB_{*j}$,
- **4** $(ABC)_{ij} = A_{i*}BC_{*j}.$

§ For any $m \times n$ matrix A , we have $A_{i*} = e_i^{\mathcal{T}} A$ and $A_{*j} = A e_j$.

 Ω

イロト イ押ト イヨト イヨト

If A has column rank r , then

- any r linearly independent columns of A form a basis for $C(A)$,
- every maximal linearly independent set of columns of A contains exactly r vectors,
- any r columns of A which generate $C(A)$ form a basis of $C(A)$.

Theorem

For any matrix A, the row rank of A equals the column rank of A.

Proof. Let A be a $m \times n$ matrix with row rank r and column rank s. If $A = 0$, then $\mathcal{R}(A) = \{0\}$ and $\mathcal{C}(A) = \{0\}$, so $r = s = 0$ and we are done.

Let $B=[x_1:x_2:\cdots:x_s]$ be an $m\times s$ matrix whose columns form a basis of $\mathcal{C}(\mathcal{A})$. Then for each $j=1,2,\ldots,n,$ each column of $\mathcal{A} ,\, \mathcal{A}_{*j}$ is a linear combination of the columns of B, so there exists an $s \times 1$ vector y_i such that $A_{*j} = By_j$. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ \equiv \cap α Now

$$
A = [A_{*1} : \cdots : A_{*n}] = [By_1 : \cdots : By_n]
$$

= $B[y_1 : \cdots : y_n] = BC$

where $C = [y_1 : \cdots : y_n]$. Note that C is of size $s \times n$.

Since $A = BC$, $A_{i*} = B_{i*}.C$, and each row of A is a linear combination of the rows of C. Thus $\mathcal{R}(A) \subset \mathcal{R}(C)$.

Taking dimensions, we get $r < row$ rank(C).

As C has only s rows, row rank(C) \leq s. Hence $r \leq$ s.

イロト イ押ト イヨト イヨト

 \equiv \cap α

Interchanging the roles of row rank and the column rank. Let $C = [y_1 : \cdots : y_r]^T$ be an $r \times n$ matrix whose rows form a basis of $\mathcal{R}(A)$. Then for each $i = 1, 2, ..., n$, each row of A, A_{i*} is a linear combination of the rows of C, so there exists an $r \times 1$ vector x_i such that $A_{i*} = x_iC$.

$$
A = [A1* : \cdots : An*]T = [x1C : \cdots : xnC]T
$$

= [x₁ : \cdots : x_n]^TC = BC

where $B=[\mathsf{x}_1:\cdots:\mathsf{x}_n]^{\mathcal{T}}.$ Note that C is of size $s\times n.$

Since $A = BC$, $A_{*j} = B$. \mathcal{C}_{*j} , and each column of A is a linear combination of the columns of C. Thus $C(A) \subseteq C(B)$.

Taking dimensions, we get $s \leq$ column rank(B). As B has only r columns, *column rank*(B) $\leq r$. Hence $s \leq r$. Thus $r = s$.

イロト イ母 トイミト イミト ニヨー りんぴ

The rank of a matrix A is the common value of the row rank of A and the column rank of A and is denoted by $\rho(A)$.

- The rank of an $m \times n$ matrix obviously lies between 0 and min (m, n) .
- Conversely, given any non-negative integer $r < min(m, n)$, there exists an $m \times n$ matrix A with rank r.
- Let A be a $m \times n$ matrix of rank r and B a submatrix of A. By considering row rank (column rank) if B is obtained from A by omitting only some rows (columns). Any submatrix can be obtained by omitting some rows and then some columns. Then $\rho(B) \leq \rho(A)$.

An $m \times n$ matrix A is said to be of full row rank if its rows are linearly independent, that is, it its rank is m. Similarly A is said to be of full column rank if its columns are linearly independent.

A left inverse of a matrix A is any matrix B such that $BA = I$. A right **inverse** of A is any matrix C such that $AC = I$.

A matrix B is said to be an inverse of A if it is both a left inverse and a right inverse of A.

 200

Theorem

Let A be a $m \times n$ matrix over F. Then the following statements are equivalent.

- **1** A has a right inverse.
- **2** Right cancellation law: $XA = YA \Rightarrow X = Y$.
- $3 XA = 0 \Rightarrow X = 0.$
- **4** A is of full row rank.
- **5** The linear transformation $f : x \mapsto Ax$ is onto: $C(A) = F^m$.

Question: If A has a right inverse, how many right inverses does A have?

Theorem

Let A be a $m \times n$ matrix over F. Then the following statements are equivalent.

- **4** A has a left inverse.
- **2** Left cancellation law: $AX = AY \Rightarrow X = Y$.
- $\mathbf{3}$ $AX = 0 \Rightarrow X = 0$.
- ⁴ A is of full column rank.
- **5** The linear transformation $f: x \mapsto Ax$ is one-to-one: $\mathcal{R}(A) = F^n$.

- A matrix B is a left inverse of a matrix A iff $B^{\mathcal{T}}$ is a right inverse of $A^{\mathcal{T}}$.
- If B and C are left inverses of A, then $\alpha B + (1 \alpha)C$ is also a left inverse of A.

If a matrix A has a left inverse B and a right inverse C, then

- \bullet A is square,
- \bullet $B = C$.
- A has a unique left inverse, a unique right inverse and a unique inverse.

If a matrix A has an inverse, then A^{-1} is unique, A is square and $AA^{-1} = A^{-1}A = I.$

Theorem

Let A be a square matrix of order n. Then the following statements are equivalent:

- **1** A has a right inverse
- 2 rank of A is n
- ³ A has a left inverse
- 4 A has an inverse.

A square matrix A is said to be **non-singular** if it has an inverse. A square matrix which does not possess an inverse is said to be singular.

- \bullet AB is non-singular iff both A and B are non-singular.
- \bullet If A is non-singular and k is a positive integer, then A^k is non-singular and its inverse is $(A^{-1})^k.$
- **3** The sum of two non-singular matrices need not be non-singular.
- \bullet Let P be a permutation matrix. Then P is non-singular and $P^{-1} = P^T$.
- \bullet If P is a permutation matrix obtained from I by interchanging two rows, $P^{-1} = P$.

Let A be a non-singular matrix whose inverse if of interest. Sometimes it happens that it is easier to compute the inverse of a matrix B obtained from A by permuting the columns (or rows). **How do we get** the inverse of A from that of B ?

Theorem

Let B be obtained from a non-singular matrix A by **permuting the** columns so that *j*-th column of B is the i_j -th column of A for $j = 1, 2, \ldots, n$, where (i_1, i_2, \ldots, i_n) is a permutation of $(1, 2, \ldots, n)$. Then \mathcal{A}^{-1} can be obtained from B^{-1} by permuting the rows thus : the i $_j$ -th row of A^{-1} is the j -th row of B^{-1} .

An $n \times n$ complex (or real) matrix A is said to be strictly diagonally dominated if for each $i = 1, 2, \ldots, n$,

$$
|a_{ij}| > \sum_{j=1, j\neq i}^n |a_{ij}|.
$$

Theorem

Every strictly diagonally dominated matrix has an inverse.

Let A be a $m \times n$ matrix with rank $r \geq 1$. Then (P, Q) is said to be a rank-factorization of A if P is of order $m \times r$, Q is of order $r \times n$ and $A = PQ$.

Theorem

Every non-null matrix has a rank-factorization.

Proof. Let A be a $m \times n$ matrix with rank r.

Let $B=[x_1:x_2:\cdots:x_r]$ be an $m\times r$ matrix whose columns form a basis of $\mathcal{C}(\mathcal{A}).$ Then for each $j=1,2,\ldots,n,$ each column of $\mathcal{A},\ \mathcal{A}_{*j}$ is a linear combination of the columns of B, so there exists an $r \times 1$ vector y_i such that $A_{*j} = By_j$.

 Ω

医阿雷氏阿雷氏

Now

$$
A = [A_{*1} : \cdots : A_{*n}]
$$

\n
$$
= [By_1 : \cdots : By_n]
$$

\n
$$
= B[y_1 : \cdots : y_n]
$$

\n
$$
= BC
$$

where $C = [y_1 : \cdots : y_n]$.

- A null matrix cannot have a rank-factorization since there cannot be a matrix with 0 rows.
- Rank-factorization of a matrix is not unique. The choice of the matrix B is not unique because the columns of B are coming from the column basis of A.
- If (B, C) is a rank-factorization of A , then $(C^{\mathcal{T}}, B^{\mathcal{T}})$ is a rank-factorization of $A^{\mathcal{T}}$.

When a factorization is a rank-factorization?

Theorem

Let $A = PQ$ where P is a m \times k matrix and Q a k \times n matrix. Then the rank of A is at most k.

Moreover, the following are equivalent:

- the rank of A is k,
- \bullet (P, Q) is a rank-factorization of A,
- P is of full column rank and Q is of full row rank,
- the columns of P form a basis of $C(A)$,
- the row of Q form a basis of $R(A)$.

つへへ

Corollary

If (P, Q) is a rank-factorization of A then $C(P) = C(A)$, $R(Q) = R(A)$ and $\mathcal{N}(Q) = \mathcal{N}(B)$.

Theorem

If $A = A^2$, rank of A equals trace of A.

Proof. The result is trivial if the rank r of A is 0, so let $r > 1$.

Let (P, Q) be a rank-factorization of A. Then $PQPQ = PQ = PI_rQ$.

Since P is of full column rank and Q is of full row rank, left and cancellation laws are applied, we get $\mathit{PA} = \mathit{I}_r$.

Hence rank of $A = r = \text{tr}(I_r) = \text{tr}(QP) = \text{tr}(PQ) = \text{tr}(A)$.

D.

Finding a rank-factorization of a matrix A of rank r is easy when A is represented in the following nice form.

Theorem

Let A be an $m \times n$ matrix of rank $r \geq 1$. Then there exist permutation matrices P and Q such that

$$
A = P \left(\begin{array}{cc} B & BC \\ DB & DBC \end{array} \right) Q
$$

where B is non-singular matrix of order r and, C and D are some matrices of orders $r \times (n - r)$ and $(m - r) \times r$ respectively.

When a matrix A in the above form, can be factorized as $A = P_1 Q_1$ where

$$
P_1 = P\left(\begin{array}{c}B\\DB\end{array}\right) \text{ and } Q_1 = \left(\begin{array}{ccc}I_r & : & C\end{array}\right) Q.
$$

Since P_1 is of order $m \times r$, it follows that (P_1, Q_1) is a rank-factorization of A. Ω P. Sam Johnson (NITK) [Rank-Factorization of a Matrix](#page-0-0) May 26, 2017 20 / 21

References

- S. Kumaresan, "Linear Algebra A Geometric Approach", PHI Learning Pvt. Ltd., 2011.
- A. Ramachandra Rao and P. Bhimasankaram, "Linear Algebra", Hindustan Book Agency, 2000.

4 日下

 QQ

⊀ 御 ⊁ (≮ 唐 ≯ (≮ 唐 ≯