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Overview

The study of approximation theory involves two general types of problems.
One problem arises when a function is given explicitly, but we wish to
find a “simpler” type of function, such as a polynomial, that can be used
to determine approximate values of the given function.

The Taylor polynomial of degree n about the number x0 is an
excellent approximation to an (n + 1)-times differentiable function f
in a small neighbourhood of x0.

The second problem in approximation theory is concerned with fitting
functions to given data and find the “best” function in a certain class to
represent the data.

The Lagrange interpolating polynomials are approximating
polynomials and they fit certain data.

Limitations of these techniques are considerd, and other avenues of
approach are disussed.
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Introduction

Usually a mathematical equation is fitted to experimental data by plotting
the data on a graph paper and then passing a straight line through the
data points.

The method has the obvious drawback in that the straight line drawn may
not be unique. The method of least squares is probably the most
systematic procedure to fit a unique curve using given data points and is
widely used in practical computations. It can also be easily implemented
on a digital computer.
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Fitting a Staight Line

Let y = a0 + a1x be the straight line to be fitted to the given data.

The problem of finding the equation of the best linear approximation
requires that values of a0 and a1 be found to minimize

S(a0, a1) =
m∑
i=1

|yi − (a0 + a1xi )|.

This quantity is called the absolute deviation.
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To minimize a function of two variables, we need to set its partial
derivatives to zero and simultaneously solve the resulting equations.

In the case of the absolute deviation, we need to find a0 and a1 with

0 =
∂S

∂a0
= 0 =

m∑
i=1

|yi − (a0 + a1xi )|.

and

0 =
∂S

∂a1
= 0 =

m∑
i=1

|yi − (a0 + a1xi )|.

The difficulty is that the absolute-value funciton is not differentiable at
zero, and we may not be able to find solutions to this pair of equations.

The least squares approach to this problem involves determining the best
approximating line when the error involved is the sum of the squares of the
differences between the y -values on the approximating line and the given
y -values.
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Hence, the sum of the squares of the errors,

S =
m∑
i=1

[yi − (a0 + a1xi )]2.

For S to be minimum, we have

∂S

∂a0
= 0 = −2

m∑
i=1

[yi − (a0 + a1xi )].

and

∂S

∂a1
= 0 = −2

m∑
i=1

xi [yi − (a0 + a1xi )].
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The above equations are simplified to

ma0 + a1

m∑
i=1

xi =
m∑
i=1

yi

and

a0

m∑
i=1

xi + a1

m∑
i=1

x2i =
m∑
i=1

xiyi .

Since the xi and yi are known quantities, the above two equations (called
the normal equations), can be solved for the two unknown a0 and a1.

Differentiating ∂S
∂a0

and ∂S
∂a1

with respect to a0 to a1 respectively, we find
that

∂2S

∂a20
and

∂2S

∂a21

will both be positive at the points a0 and a1. Hence these values provide a
minimum of S .
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Another approach of finding the equation of the best linear approximation
requires that values of a0 and a1 be found to minimize

S(a0, a1) = max
1≤i≤m

{
|yi − (a0 + a1xi )|

}
.

This is commonly called a minimax problem and cannot be handled by
elementary techniques.

The minimax approach generally assigns too much weight to a bit of
data that is badly in error, whereas the absolute deviation method does
not give sufficient weight to a point that is considerably out of line with
the approximation.

The least squares approach puts substantially more weight on a point
that is out of line with the rest of the data but will not allow that point to
completely dominate the approximation.
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Polynomial of the nth degree

Let the polynomial of the nth degree, y = a0 + a1x + a2x
2 + · · ·+ anx

n be
fitted to the data points (xi , yi ), i = 1, 2, . . . ,m. We then have

S =
m∑
i=1

[yi − (a0 + a1xi + · · ·+ anx
n
i )]2.

We get the following normal equations

ma0 + a1

m∑
i=1

xi + a2

m∑
i=1

x2i + · · ·+ an

m∑
i=1

xni =
m∑
i=1

yi

a0

m∑
i=1

xi + a1

m∑
i=1

x2i + · · ·+ an

m∑
i=1

xn+1
i =

m∑
i=1

xiyi

...

a0

m∑
i=1

xni + a1

m∑
i=1

xn+1
i + · · ·+ an

m∑
i=1

x2ni =
m∑
i=1

xni yi .

These are (n + 1) equations in (n + 1) unknowns and hence can be solved
for a0, a1, . . . , an. Equations (??) then gives the required polynomial of the
nth degree.
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Nonlinear Curve Fitting : Power Function

We consider a power function, y = axc to fit the given data points

(xi , yi ), i = 1, . . . ,m.

Taking logarithms of both sides, we obtain the relation

log y = log a + c log x ,

which is of the form Y = a0 + a1X , where Y = log y , a0 = log a, a1 = c
and X = log x .

Hence the procedure discussed earlier can be followed to evaluate a0 and
a1.

Then a and c can be calculated from the formulae a0 = log a and c = a1.
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Nonlinear Curve Fitting : Exponential Function

Let the curve
y = a0e

a1x∗

be fitted to the given data.

Then, as before, taking logarithms of both sides, we get

log y = log a0 + a1x ,

which can be written in the form

Z = A + Bx ,

where Z = log y ,A = log a0 and B = a1.

The problem therefore reduces to finding a least-squares straight line
through the given data.
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Fitting the data with given curve

Let the set of data points be

(xi , yi ), i = 1, 2, . . . ,m,

and let the curve given by
y = f (x)

be fitted to this data.

At x = xi , the experimental (or observed) value of the ordinate is yi and
the corresponding value on the fitting curve is f (xi ).

If ei is the error of approximation at x = xi , then we have

ei = yi − f (xi ).
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If we write

S = [y1 − f (x1)]2 + [y2 − f (x2)]2 + · · ·+ [ym − f (xm)]2

= e21 + e22 + · · ·+ e2m

then the method of least squares consists in minimizing S , i.e., the sum of
the squares of the errors.

Nodes (xi , yi ) are in red coloured
points. The curve y = f (x) is to
be fitted to this data is shown in
blue.
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Weighted Least Squares Approximation

We have minimized the sum of squares of the errors. A more general
approach is to minimize the weighted sum of the squares of the errors
taken over all data points. If this sum is denoted by S , then we have

S =
m∑
i=1

Wi [yi − f (xi )]2

=
m∑
i=1

Wie
2
i .

In the above equation, the Wi are prescribed positive numbers and are
called weights.

A weight is prescribed according to the relative accuracy of a data point.
If all the data points are accurate, we set Wi = 1 for all i . We consider
again the linear and nonlinear cases below.
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Linear Weighted Least Squares Approximation

Let y = a0 + a1x be the staight line to be fitted to the given data points,
(x1, y1), . . . , (xm, ym). Then

S(a1, a2) =
m∑
i=1

Wi [yi − (a0 + a1xi )]2

For maxima or minima, we have

∂S

∂a0
=

∂S

∂a1
= 0

which given

∂S

∂a0
= −2

m∑
i=1

Wi [yi − (a0 + a1xi )] = 0

and
∂S

∂a1
= −2

m∑
i=1

Wi [yi − (a0 + a1xi )]xi = 0.
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Simplification yields the system of equations for a0 and a1 :

a0

m∑
i=1

Wi + a1

m∑
i=1

Wixi =
m∑
i=1

Wiyi

and

a0

m∑
i=1

Wixi + a1

m∑
i=1

Wix
2
i =

m∑
i=1

Wixiyi

which are the normal equations in this case and are solved to obtain a0
and a1.

Suppose that in data, a point (x0, y0) is known to be more reliable
than the others. Then we prescribe a weight (say, 10) corresponding
to this point only and all other weights are taken as unity.

We consider with an increased weight, say 100, corresponding to
(x0, y0), then the approximation becomes better when the weight is
increased.
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Nonlinear Weighted Least Squares Approximation

We now consider the least squares approximation of a set of m data points

(xi , yi ), i = 1, 2, . . . ,m,

by a polynomial of degree n < m. Let

y = a0 + a1x + a2x
2 + · · ·+ anx

n

be fitted to the given data points. We then have

S(a0, a1, . . . , an) =
m∑
i=1

Wi [yi − (a0 + a1xi + · · ·+ anx
n
i )]2.

If a minimum occurs at (a0, a1, . . . , an), then we have

∂S

∂a0
=

∂S

∂a1
=

∂S

∂a2
= · · · =

∂S

∂an
= 0.
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These conditions yield the normal equations

a0

m∑
i=1

Wi + a1

m∑
i=1

Wixi + · · ·+ an

m∑
i=1

Wix
n
i =

m∑
i=1

Wiyi

a0

m∑
i=1

Wixi + a1

m∑
i=1

Wix
2
i + · · ·+ an

m∑
i=1

Wix
n+1
i =

m∑
i=1

Wixiyi

...

a0

m∑
i=1

Wix
n
i + a1

m∑
i=1

Wix
n+1
i + · · ·+ an

m∑
i=1

Wix
2n
i =

m∑
i=1

Wix
n
i yi .

There are (n + 1) equations in (n + 1) unknowns a0, a1, . . . , an.

If the xi ’s are distinct with n < m, then the equations possses a ’unique’
solution.
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Method of Least Squares for Continuous Functions

We considered the least squares approximations of discrete data. We shall
discuss the least squares approximation of a continuous function on [a, b].

The summations in the normal equations are now replaced by definite
integrals. Let y(x) = a0 + a1x + a2x

2 + · · ·+ anx
n be chosen to minimize

S(a0, a1, . . . , an) =

∫ b

a
W (x)[y(x)− (a0 + a1x + a2x

2 + · · ·+ anx
n)]2dx .

The necessary conditions for minimum are given by

∂S

∂a0
=

∂S

∂a1
= · · · =

∂S

∂an
= 0.
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Hence

−2

∫ b

a
W (x)[y(x)− (a0 + a1x + a2x

2 + · · ·+ anx
n)]dx = 0

−2

∫ b

a
W (x)[y(x)− (a0 + a1x + a2x

2 + · · ·+ anx
n)]xdx = 0

−2

∫ b

a
W (x)[y(x)− (a0 + a1x + a2x

2 + · · ·+ anx
n)]x2dx = 0

...

−2

∫ b

a
W (x)[y(x)− (a0 + a1x + a2x

2 + · · ·+ anx
n)]xndx = 0
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Rearrangement of terms gives the system

a0

∫ b

a
W (x)dx + a1

∫ b

a
xW (x)dx + · · · + an

∫ b

a
xnW (x)dx =

∫ b

a
W (x)y(x)dx

a0

∫ b

a
xW (x)dx + a1

∫ b

a
x2W (x)dx + · · · + an

∫ b

a
xn+1W (x)dx =

∫ b

a
xW (x)y(x)dx

.

.

.

a0

∫ b

a
xnW (x)dx + a1

∫ b

a
xn+1W (x)dx + · · · + an

∫ b

a
x2nW (x)dx =

∫ b

a
xnW (x)y(x)dx

The system comprises (n + 1) normal equations in (n + 1) unknowns
a0, a1, a2, . . . , an and they always possess a ‘unique’ solution.
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