
Rank-Factorization of a Matrix

P. Sam Johnson

August 28, 2014

P. Sam Johnson (NITK) Rank-Factorization of a Matrix August 28, 2014 1 / 12



Aim of the lecture

The aim of the lecture is to discuss full rank matrices and factorization of
every non-null matrix as a product of two full rank matrices.

Several nice properties of matrices which are of full rank (either full row
rank or full column rank) are discussed.
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Definition

Let A be a m × n matrix. Then the column space of A is C(A) is

C(A) := {Ax : x ∈ F n}

and the row space of A is

R(A) := {yTA : y ∈ Fm}.

We call dim(R(A)) the row rank of A and dim(C(A)) the column
rank of A.

We refer to a basis of C(A) consisting of columns of A as a column
basis. A row basis is defined similarly.
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If A has column rank r , then

any r linearly independent columns of A form a basis for C(A),

every maximal linearly independent set of columns of A contains
exactly r vectors,

any r columns of A which generate C(A) form a basis of C(A).

Theorem

For any matrix A, the row rank of A equals the column rank of A.

Definition

The rank of a matrix A is the common value of the row rank of A and the
column rank of A and is denoted by ρ(A).
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Definition

An m × n matrix A is said to be of full row rank if its rows are linearly
independent, that is, it its rank is m. Similarly A is said to be of full
column rank if its columns are linearly independent.

A left inverse of a matrix A is any matrix B such that BA = I . A right
inverse of A is any matrix C such that AC = I .

A matrix B is said to be an inverse of A if it is both a left inverse and a
right inverse of A.
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Theorem

Let A be a m × n matrix over F . Then the following statements are
equivalent.

1 A has a right inverse.

2 XA = 0⇒ X = 0.

3 A is of full row rank.

Theorem

Let A be a m × n matrix over F . Then the following statements are
equivalent.

1 A has a left inverse.

2 AX = 0⇒ X = 0.

3 A is of full column rank.
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Definition

Let A be a m × n matrix with rank r ≥ 1. Then (P,Q) is said to be a
rank-factorization of A if P is of order m × r , Q is of order r × n and
A = PQ.

Theorem

Every non-null matrix has a rank-factorization.

Proof. Let A be a m × n matrix with rank r .

Let B = [x1 : x2 : · · · : xr ] be an m × r matrix whose columns form a basis
of C(A). Then for each j = 1, 2, . . . , n, each column of A, A∗j is a linear
combination of the columns of B, so there exists an r × 1 vector yj such
that A∗j = Byj .
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Now

A = [A∗1 : · · · : A∗n]

= [By1 : · · · : Byn]

= B[y1 : · · · : yn]

= BC

where C = [y1 : · · · : yn].

A null matrix cannot have a rank-factorization since there cannot
be a matrix with 0 rows.

Rank-factorization of a matrix is not unique. The choice of the
matrix B is not unique because the columns of B are coming from
the column basis of A.

If (B,C ) is a rank-factorization of A, then (CT ,BT ) is a
rank-factorization of AT .
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When a factorization is a rank-factorization?

Theorem

Let A = PQ where P is a m × k matrix and Q a k × n matrix. Then the
rank of A is at most k.
Moreover, the following are equivalent:

the rank of A is k,

(P,Q) is a rank-factorization of A,

P is of full column rank and Q is of full row rank,

the columns of P form a basis of C(A),

the row of Q form a basis of R(A).
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Corollary

If (P,Q) is a rank-factorization of A then C(P) = C(A), R(Q) = R(A)
and N (Q) = N (B).

Theorem

If A = A2, rank of A equals trace of A.

Proof. The result is trivial if the rank r of A is 0, so let r ≥ 1.

Let (P,Q) be a rank-factorization of A. Then PQPQ = PQ = PIrQ.

Since P is of full column rank and Q is of full row rank, left and
cancellation laws are applied, we get PA = Ir .

Hence rank of A = r = tr(Ir ) = tr(QP) = tr(PQ) = tr(A).
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Finding a rank-factorization of a matrix A of rank r is easy when A
is represented in the following nice form.

Theorem

Let A be an m × n matrix of rank r ≥ 1. Then there exist permutation
matrices P and Q such that

A = P

(
B BC
DB DBC

)
Q

where B is non-singular matrix of order r and, C and D are some matrices
of orders r × (n − r) and (m − r)× r respectively.

When a matrix A in the above form, can be factorized as A = P1Q1 where

P1 = P

(
B
DB

)
and Q1 =

(
Ir : C

)
Q.

Since P1 is of order m × r , it follows that (P1,Q1) is a rank-factorization
of A.
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