Department of Mathematical and Computational Sciences, NITK, Surathkal Linear Algebra and Matrices (MA 204)

https://sam.nitk.ac.in/sites/default/MA204-ps-8.pdf

Instructor: P. Sam Johnson

Problem Sheet 8

- 1. Think of a matrix A, as a linear map which takes the jth elements of the standard basis of \mathbb{R}^n to the jth column C_j . How the column space is nothing other than Im(A)? Explain.
- 2. Prove or disprove: If A, B and C are pair-wise disjoint subsets of V such that $A \cup B$ and $A \cup C$ are bases of V, then Sp(B) = Sp(C).
- 3. Let x_1, x_2, \ldots, x_n be fixed distinct real numbers.
 - (a) Show that $\ell_1(t), \ell_2(t), \dots, \ell_n(t)$ form a basis of \mathcal{P}_n , where $\ell_i(t) = \prod_{i \neq j} (t x_j)$. This basis leads to what is known as Lagrange's interpolation formula. If $f(t) \in \mathcal{P}_n$ is written as $\sum_{i=1}^n \alpha_i \ell_i(t)$, show that $\alpha_i = f(x_i)/\ell_i(x_i)$.
 - (b) Show that $\psi_1(t), \psi_2(t), \dots, \psi_n(t)$ form a basis of \mathcal{P}_n , where $\psi_i(t) = 1$ and $\psi_i(t) = \prod_{j=1}^{i=1} (t-x_j)$ for $i=2,\ldots,n$. This basis leads to what is known as Newton's divided difference formula.
- 4. Extend $A = \{(1, 1, \dots, 1)\}$ to a basis of \mathbb{R}^n .
- 5. Let S and T be subspaces of a vector space V with d(S) = 2, d(T) = 3 and d(V) = 5. Find the minimum and maximum possible values of d(S + T) and show that every (integer) value between these can be attained.
- 6. Show that the distributive law

$$S \cup (T + W) = (S \cup T) + (S \cup W)$$

is false for subspaces. However prove that it holds whenever $S \supseteq T$ or $S \supseteq W$. This latter result is known as the *modular law*.