Instructor: P. Sam Johnson

Problem Sheet 6

- 1. Prove or disprove: $Sp(A) \cap Sp(B) \neq \{0\} \implies A \cup B \neq \emptyset$.
- 2. True or False : If $A \subseteq B$ and $Sp(A) \supseteq B$, then Sp(A) = Sp(B).
- 3. If x and y are linearly independent show that $x + \alpha y$ and $x + \beta y$ are linearly independent whenever $\alpha \neq \beta$.
- 4. Let Sp(A) = S. Then show that no proper subset of A generates S iff A is linearly independent.
- 5. For what values of α are the vectors $(0,1,\alpha),(\alpha,1,0)$ and $(1,\alpha,1)$ in \mathbb{R}^3 linearly independent.
- 6. Let $S = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Compute the least positive integer k such that S^k is the zero matrix.
- 7. Find E^2 , E^8 and E^{-1} if $E = \begin{pmatrix} 1 & 0 \\ 6 & 1 \end{pmatrix}$.
- 8. Let $P_{n\times n}$ be any permutation matrix. Prove that $P_{n\times n}^m=I_{n\times n}$ for some m.
- 9. In each of the following, find precisely which axioms in the definition of a vector space are violated. Take $V = \mathbb{R}^2$ and $F = \mathbb{R}$ throughout
 - (a) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, 0), \quad \alpha(x_1, x_2) = (\alpha x_1, 0)$
 - (b) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \alpha(x_1, x_2) = (\alpha x_1, 0)$
 - (c) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \alpha(x_1, x_2) = (\alpha x_1, 2\alpha x_2)$
 - (d) $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \alpha(x_1, x_2) = (\alpha + x_1, \alpha + x_2).$
- 10. True or False: The set of all positive real numbers forms a vector space over \mathbb{R} if the sum of x and y is defined to be the usual product xy and α times x is defined to be x^{α} .
- 11. Let V be a vector space. On $V \times V$, define +, and . as follows:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + y_1, x_2 + y_2)$$

 $\alpha(x, y) = (\alpha x, \alpha y), \alpha \in \mathbb{R}, x, y \in V.$

Is $V \times V$ a vector space? If not, write down the conditions (axioms) which are violated.

12. Let $X := \{*\}$ be a singleton set and let V be a vector space. Let $W = \{*\} \times V$. Can we turn W into a vector space as follows?

$$(*, x_1) + (*, x_2) = (*, x_1 + x_2), x_1, x_2 \in V$$

 $\alpha(*, x) = (*, \alpha x), \alpha \in \mathbb{R}, x \in V.$