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Overview

A scalar associated with a square matrix, is defined, called determinant.

Determinant

occurs in Cramer’s rule for solving linear equations.

can be used to give a formula for the inverse of a non-singular
matrix.

in calculus of several variables, the Jacobian used in transforming a
multiple integral uses determinant.

is useful in the study of eigenvalues.

We discuss properties of determinants, calculations and simple
applications.
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Brief Historical Introduction

Based on two simultaneous quadratic (non-linear) equations

a11x
2 + a12x + c12 = 0,

a21x
2 + a22x + c22 = 0,

a famous Japanese mathematician, Seki Kowa (1642-1708) first
discovered the idea of 2× 2 determinant in 1683.

Eliminating x2, we get (a11a22 − a21a12)x + (a11c22 − c21a12) = 0. Seki
Kowa then used the coefficient of x to introduce a 2× 2 determinant.

Seki Kowa
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Brief Historical Introduction

In the same year 1683, a famous German mathematician, Gottfried
Wilhelm Leibniz (1646-1716) independently discovered the same idea of
determinant in Europe. He wrote to de L’Hospital (1661-1740)
explaining his idea in solving a system of linear equations.

Gottfried Wilhelm Leibniz de L’Hospital
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Brief Historical Introduction

Both Seki Kowa and Leibniz not only discovered the idea of determinant
as unique scalar, but also knew many elementary properties of
determinants including how to expand a determinant using any row or
column what is now known as the Laplace expansion and how to
determine which terms in the expansion are positive and which terms are
negative.

Thus, the idea of determinant appeared in Japan and Germany at
almost exactly the same time, but Seki Kowa in Japan certainly first
published his work on determinant.
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Brief Historical Introduction

Seki Kowa was born on the same year in which Sir Isaac Newton
(1642-1727) was born in England. Seki Kowa has been described as
Japan’s ”Newton”. He is frequently compared with Archimedes (287 -
212 B.C), Newton and Carl Friedrich Gauss (1777-1855).

Archimedes
Sir Isaac Newton Carl Friedrich Gauss
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Brief Historical Introduction

In 1730s, Colin Maclaurin (1698-1746), a brilliant English mathematician,
wrote Treatise of Algebra that was published in 1748, two years after his
death. It contained first published results on determinants including
Cramer’s rule of solving two and three simultaneous linear equations, and
indicating how to solve the four simultaneous linear equations in four
unknowns by the fourth-order determinant.

Indeed, in 1750, Cramer gave an elegant general rule for solving n linear
simultaneous equations in n unknowns x1, x2, . . . , xn. Cramer’s solutions
are given in terms of determinants. Cramer also published his rule in his
treatise Introduction to the Analysis of Algebraic Curves in 1750.
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Iterative Methods and Numerical Techniques

Cramer’s method is analytically exact, but computationally inefficient
for all but small systems of linear equations because it involves
computation of determinants of large orders. So, the computation of detA
of order n from its definition as a major problem of computating n! terms.

Subsequently, other iterative methods and numerical techniques have
replaced the use of determinants for solving linear systems and computing
eigenvalues of matrices. Among other methods, Carl Gustave Jacobi’s
(1804-1851) method and its refinement known as the Gauss-Seidel
method published by Phillip Ludwig (1821-1896) in 1874 have been
successful as direct methods for solving linear system of equations.
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Iterative Methods and Numerical Techniques

Given a system of n linear equations in n unknowns, we solve the first
equation in x1, in the second for x2 and so on. Thus, starting with an
initial approximation, we use these new equations to iteratively update
each unknown. Jacobi’s method uses all of the values at the rth
iteration to compute the (r + 1)th iterate, wheras the Gauss-Seidel
method always uses the most recent value of each unknown in every
calculation.

Naturally, the quesion of convergence will arise about these iterative
methods. Indeed, there are examples in which one of the methods
converges and the other diverges. However, if either of these methods
converges, then it must converge to the solution – it cannot converge
to some other point. These iterative methods are widely used when
working with large determinants.
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In 1801, it was Gauss, a German mathematician, who first used the
properties of determinant in his Disquisitiones Arithmeticae to develop
the theory of quadratic forms. Subsequently, Augustin Louis Cauchy
(1789-1857), one of the greatest French mathematicians, made significant
contributions to the theory of determinants in the modern sense in the
context of quadratic forms in n variables.

In 1812, Cauchy proved the multiplication theorem for determinants for
the first time, and proved results on diagonalization of a matrix in the
context of converting a form to the sum of squares. He reproved many
earlier results, broadened, deepened and generalized them with rigorous
mathematical style. In the context of determinants, he discovered formulae
for volumes of parallelepied, tetrahedron and several other solid polyhedra.
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Notation for determinant

Augustin Louis Cauchy Arthur Cayley

Determinants arose independently of matrices in the solution of many
practical problems, and the theory of determinants was well developed
almost two centuries before the discovery of matrices.

Arthur Cayley (1821-1895), a British mathematician first introduced the
notation of two vertical lines on either side of the array to denote the
determinant which has become standard.
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Geometric interpretation of the determinant of a square
matrix of size 2

Consider R2. Let x =

(
x1
x2

)
, y =

(
y1
y2

)
∈ R2 be any two nonzero

vectors. We want to compute the area of the parallelogram spanned by
these vectors.

We can rearrange the given set into a rectangle by cutting away a
right-angled triangle and pasting it on the opposite side. Hence the area of
the parallelogram is “the base times the height”. After calculation, the
area of the parallelogram is |x1y2 − x2y1|.

We may thus think of det(x , y) as the signed area of the parallelogram
spanned by x and y .
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Let A be the area of the unit square S spanned by {e1, e2}. Let
T : R2 → R2 be the linear map such that Te1 = v1 and Te2 = v2.

Then the area of the parallelogram spanned by v and w is given by

Area[v ,w ] = | det(T )| = | det(T )| Area[e1, e2].

Thus the linear map T distorts the area of S by the factor | det(T )|; that
is, det(T ) is the factor by which the area of the unit square in R2 is
multiplied to get the area of T (S).
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Generalization to a square matrix of order n

Let V be any vector space of dimension n. We wish to define determinant
as a function which attaches to any n-tuple of vectors
(v1, v2, . . . , vn) ∈ V n a real number. This number is to be thought of as
the signed volume of the parallelepied spanned by vi ’s.

In any kind of measurement we need a unit against which others are
measured. In our case this means that we have to make a choice of a
parallelepied and declare its volume as 1.

Will any n vectors [v1, v2, . . . , vn] do ? No ! For, if they are linearly
dependent the parallelepied lies in a vector subspace of dimension at most
n − 1 and hence its n-dimensional volume must be zero. Thus, a basis
{ei}ni=1 of V must be fixed.
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Based on our geometric intuition, we expect this function f : V n → R to
possess the following geometric properties:

Magnified by α :
For all α ∈ R, and for all i ,

f (v1, v2, . . . , αvi , . . . , vn) = αf (v1, v2, . . . , vi , . . . , vn).

Area/Volume unaltered by cutting and rearranging :
For all i 6= j ,

f (v1, v2, . . . , vi , . . . , vj . . . , vn) = f (v1, v2, . . . , vi + vj , . . . , vj , . . . , vn).

Normalization condition :
If {e1, e2, . . . , en} is the chosen basis of V ,

f (e1, e2, . . . , . . . , en) = 1.
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Assume that there exists a function f : V n → R satisfying the above
(basic) properties. Then

1 f (v1, v2, . . . , vn) = 0 if vi = 0 for some i with 1 ≤ i ≤ n.

2 For i 6= j and α ∈ R,
f (v1, v2, . . . , vi , . . . , vj . . . , vn) = f (v1, v2, . . . , vi + αvj , . . . , vj , . . . , vn).

3 More generally, we see that, for any αj ∈ R and i 6= j ,
f (v1, v2, . . . , vi , . . . , vj . . . , vn) =
f (v1, v2, . . . , vi +

∑
i 6=j αjvj , . . . , vj , . . . , vn).

4 f (v1, v2, . . . , vn) = 0 if {v1, v2, . . . , vn} is linearly dependent.

5 For any j ∈ {1, 2, . . . , n} and for any v ′j , v
′′
j we have

f (v1, v2, . . . , v
′
i + v ′′i , . . . , vn) =

f (v1, v2, . . . , v
′
i , . . . , vn) + f (v1, v2, . . . , v

′′
i , . . . , vn).

6 f (v1, v2, . . . , vi , . . . , vj , . . . , vn) = −f (v1, v2, . . . , vj , . . . , vi , . . . , vn).
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Let V be any vector space. An n-linear map is a function f : V n → R
such that for each i , 1 ≤ i ≤ n, the following are true:
f (v1, . . . , vi + wi . . . , vn) = f (v1, . . . , vi . . . , vn) + f (v1, . . . ,wi . . . , vn)
f (v1, . . . , αvi . . . , vn) = αf (v1, . . . , vi . . . , vn) for all vi ,wi ∈ V and α ∈ R.

Let Sn denote the set of permutations (bijections) of the set {1, 2, . . . , n}.
Let f : V n → R be an n-linear map. f is said to be skew-symmetric if
f (vσ(1), vσ(2), . . . , vσ(n)) = sign (σ)f (v1, v2, . . . , vn) for all σ ∈ Sn.

If f : V n → R satisfying the above two basic properties, then f is n-linear
and skew-symmetric.
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Let V be a vector space. Fix a basis {e1, e2, . . . , en} of V . Then there
exists a unique function g : V n → R such that

1 g is n-linear.

2 g is skew-symmetric.

3 g(e1, e2, . . . , en) = 1.

If g is defined by setting

g(v1, v2, . . . , vn) =
∑
σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · · anσ(n)

where vi =
∑n

j=1 aijej , then g has the above three properties.
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We call the g as the determinant and denote it by det.

General form n-linear and skew-symmetric: Any map f : V n → R
which is n-linear and skew-symmetric is of the form

f = f (e1, e2, . . . , en) det.

That is,
f (B) = f (e1, e2, . . . , en) det(B).
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Moreover, the function det satisfies the following properties:

det is n-linear

If one interchanges vi and vj for i 6= j , then the determinants are of
opposite sign. More generally,

det(vσ(1), vσ(2), . . . , vσ(n)) = sign (σ) det(v1, v2, . . . , vn)

for any σ ∈ Sn.

det(e1, e2, . . . , en) = 1.

det(v1, v2, . . . , vn) = 0 if vi are linearly dependent.
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Determinant function on M(n,R), the set of n × n
matrices with real entries

Let A ∈ M(n,R) and write A(C1, . . . ,Cn) where Ci is the ith column of A.

We then define
detA := det(C1, . . . ,Cn)

where det is the n-linear skew-symmetric function on
Rn × Rn × · · ·Rn → R with det(e1, . . . , en) = 1.

Note that detA = det(Ae1, . . . ,Aen) for A ∈ M(n,R).
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If A = (aij) is a square matrix of order n, the determinant of A is

detA =
∑

sign(σ)a1σ(1)a2σ(2) · · · anσ(n) (1)

where σ runs over the n! permutations of (1, 2, . . . , n).

The summation, therefore, extends over n! permutations of (1, 2, . . . , n),
half of which are even and half odd. Thus (1) is a formal definition of a
determinant of order n and seldom used in practice for evaluating a
determinant of higher order n > 3. However, it is effectively used for
proving the properties of determinants with applications.

Each term in the above expression contains exactly one element from each
row and exactly one element from each column of the matrix.
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Properties of determinants

The determinant of A is 0 if A has either a null row or a null column.

The determinant of A is 0 if any two rows (or columns) are identical.

The determinant of a triangular matrix is the product of the diagonal
elements.

The interchange of any two rows (or columns) of a matrix changes
the sign of its determinants.

The determinant of a matrix and its transpose are equal, that is,
detA = detAT .
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Properties of determinants

If B is obtained from A by multiplying any one row or column by k ,
detB = k detA. The determinant of a matrix kA of order n is
kn detA.

For a fixed k, let the k-th row of A be the sum of two row vectors xT

and yT . Then detA = detB + detC where B (resp. C ) is obtained
from A by replacing the k-th row by xT (resp. yT ).
Thus from the above two points, the determinant is a linear function
of the kth row when the other rows are kept fixed.

If a scalar multiple of one row (resp. column) is added to another row
(resp. column) of a matrix, the determinant of the matrix is not
altered.
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Properties of determinants

An efficient method for evaluating detA:
We reduce A to an upper triangular matrix B using elementary row
operations. Suppose α1, α2, . . . , αp are the scalars used in the row
operations of the type ‘multiplying a row by a non-zero scalar’ and
suppose q interchanges of rows are used. Then clearly

detA = (−1)q
b11b22 · · · bnn
α1α2 · · ·αp

.

Since the αi ’s are non-zero, detA 6= 0 iff all the diagonal elements of
B are nonzero.

A square matrix A is non-singular iff detA 6= 0.

detA−1 = 1/(detA).
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Geometric interpretation of the determinant of a square
matrix of size 3

For a 3× 3 matrix A, detA is the volume of the parallelepied formed with
OP,OQ and OR as three edges, where O is the origin and P,Q and R are
the points of R3 corresponding to the three rows of A. By convention, the
volume is positive iff OP,OQ and OR from a right-handed system.

That is, the following happens: imagine a right-handed screw placed
perpendicular to the plane OPQ with its tip at the origin. If the screw is
rotated from OP to OQ by the smaller angle, the line OR lies on the side
of the plane OPQ into which the screw advances.
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A recursive method for evaluating determinants by
expressing a determinant of order n in terms of
determinants of order n − 1.

Let A be a matrix of order n ≥ 2. Then the cofactor of aij in A as
Aij = (−1)i+j det(Mij) where Mij is the matrix obtained from A by deleting
the i-th row and the j-th column. The detMij is called the minor of aij .
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A determinant can be expanded by any row. Let A be a square matrix
of order n and k an integer such that 1 ≤ k ≤ n. In 1772, Pierre Simon
Laplace (1749-1827), a famous French mathematician, proved the
expansion of determinant of order n in terms of minors or cofactors along
the i-th row in the form

detA =
n∑

j=1

akjAkj .

The expansion is universally known as the Laplace Expansion.

A determinant can be expanded by any column. We can similarly
expand detA by the k-th column as follows:

detA =
n∑

i=1

aikAik .

Clearly it is best to expand a determinant by a row or a column having the
maximum number of zeros.
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Let A be an n × n matrix. Suppose now I = {i1, . . . , ik} and
J = {j1, . . . , jk}. The submatrix A(I |J) is obtained by deleting I rows and
J columns, where I and J are the complements of I and J respectively in
{1, 2, . . . , n}. Its determinant is called a k-rowed minor of A. Then the
cofactor of A(I |J) in A is

AIJ = (−1)i1+···+ik+j1+···+jk |A(I |J)|.
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Laplace Expansion. Let A be an n × n matrix and let I = {i1, . . . , ik}.
Then

|A| =
∑
J

|A(I |J)| AIJ

=
∑
J

(−1)i1+···+ik+j1+···+jk |A(I |J)||A(I |J)|

where J runs over all subsets of {1, 2, . . . , n} with size k and I , J are the
complements of I and J respectively in {1, 2, . . . , n}.

Note that there are nck terms in the sum and each term is a product of
matrices of orders k and n − k respectively.
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Cramer’s rule

Consider a system of three equations in three unknowns, Ax = b, where
x = (x1, x2, x3)T . Let A1,A2 and A3 be the columns of A. Then

x1 det(A1,A2,A3) = det(x1A1,A2,A3)

= det(x1A1 + x2A2 + x3A3,A2,A3)

= det(b,A2,A3).

Therefore x1 = det(b,A2,A3)
detA .

Generalization for any n. Let A ∈ M(n,R) with detA 6= 0. Let b ∈ Rn

be a column vector. Then the solution of Ax = b is given by

xj =
det(A1, . . . , b, . . . ,An)

detA

where b is in the jth place and detA = det(A1, . . . ,An) where Ai is the ith
column of A.
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Applications of determinants : Vandermonde’s matrix

Interpolating a polynomial of (n − 1) degree. We next consider a
polynomial of degree n in the form

y = P(x) = a1 + a2x + · · ·+ anx
n−1

which passes through n points (xi , yi ), i = 1, 2, . . . , n so that P(xi ) = yi
leads to a system of n linear equations with n variables a1, a2, . . . , an. In
matrix notation, this system reads

Vn


a1
a2
...
an

 =


1 x1 · · · xn−11

1 x2 · · · xn−12
...

... · · ·
...

1 xn · · · xn−1n




a1
a2
...
an

 =


y1
y2
...
yn

 .
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The n× n coefficient matrix is also known as Vandermonde’s matrix and
the associated n-th order Vandermonde’s determinant is given by

detVn = Π1≤j<i≤n(xi − xj)

= (x2 − x1) · · · (xn − x1)(x3 − x2) · · · (xn − x2) · · · (xn − xn−1).

Clearly, Vn is non-singular iff x1, x2, . . . , xn are distinct.
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The Vandermonde matrix occurs in many contexts like polynomial
interpolation, regression, weighing designs, coding theory, signal
processing, secret codes in cryptography and error-correcting codes in
digital communication.

In addition to major work on the theory of determinants by Cramer and
Vandermonde, in 1764, Etienne Bezout (1730-1783) also made some
significant contributions to determinants including the solution of n
homogeneous equations in n unknowns. He proved that the nontrivial
solutions of this system exist provided the determinant of the coefficient
matrix is zero.
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Applications of determinants

Determinants were closely related to areas and volumes in geometry and
can be used to produce equations of lines, planes and other curves.

There exists a unique straight line passing through two distinct points
(x1, y1) and (x2, y2) in a plane. If the equation of this line is
ax + by + c = 0, then ax1 + by1 + c = 0 and ax2 + by2 + c = 0.
Thus, we have a system of three linear equations with variables a, b
and c . So there exists a nontrivial solution for a, b and c provided the
determinant of the coefficient matrix must be zero. That is,∣∣∣∣∣∣

x y 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ = 0.

This is the determinant form of the equation of a line passing
through two points (x1, y1) and (x2, y2).
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Three points (x1, y1), (x2, y2) and (x3, y3) are collinear if and only if∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = 0.

Similarly, the equation of the plane passing through three noncollinear
points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) in the xyz-space has the
determinant form ∣∣∣∣∣∣∣∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣ = 0.

P. Sam Johnson (NITK) Determinants : brief history, geometric interpretation, properties, calculation, applicationsSeptember 6, 2014 36 / 37



References

L. Debnatha, “A brief historical introduction to determinants with
applications”, International Journal of Mathematical Education in
Science and Technology, Volume 44, Issue 3, 15 April 2013, 388-407.

S. Kumaresan, “Linear Algebra - A Geometric Approach”, PHI
Learning Pvt. Ltd., 2011.

A. Ramachandra Rao and P. Bhimasankaram, “Linear Algebra”,
Hindustan Book Agency, 2000.

P. Sam Johnson (NITK) Determinants : brief history, geometric interpretation, properties, calculation, applicationsSeptember 6, 2014 37 / 37


