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Overview

We discuss eigenvalues and eigenvectors associated with a complex square
matrix. These are useful in the study of canonical forms of a matrix under
similarity and in the study of quadratic forms.

They have applications in many subjects like Geometry, Mechanics,
Astronomy, Enigneering, Economics and Statistics.

Throughout in the lecture we take the base field to be C (the set of all
complex numbers) except in a few places where we take it to be R (the set
of all real numbers).

‘A’ will denote an n × n matrix unless specified otherwise.
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For any n × n matirix, consider the polynomial

χA(λ) := |λI − A|.

Clearly this is a monic polynomial of degree n.

So, by the fundamental theorem of algebra, χA(λ) has exactly n (not
necessarily distinct) roots, usually denoted by λ1, λ2, . . . , λn. Clearly

χA(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn).

χA(λ) is called the characteristic polynomial of A and χA(λ) = 0 is
called the characteristic equation of A.

The n roots of χA(λ) are called the characteristic roots of A. The
spectrum of A is the set of distinct characteristic roots of A.
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Finding the characteristic roots of a matrix is not easy in general, since
there is no easy way of finding the roots of a polynomial of degree
greater than 3.

Clearly, a complex number α is a characteristic root of A iff αI − A is
singular.

In particular, 0 is a characteristic root of A iff A is singular. The constant
term in χA(λ) is (−1)n|A|.

The coefficient of λn−1 in χA(λ) is −tr(A), where tr(A) is the trace of A,
the sum of the diagonals of A.

The coefficient of λk in χA(λ) is (−1)(n−k) times the sum of all the
(n − k)-rowed principal minors of A.

The sum of the characteristic roots of A is tr(A).

The product of the characteristic roots of A is |A|.
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If A is a (upper or lower) triangular matrix, then χA(λ) =
∏n

i=1(λ− aii )
and the characteristic roots of A are the diagonal entries of A.

Since λI − AT = (λI − A)T , characteristic polynomials of A and AT are
the same.

Theorem

Similar matrices have the same characteristic polynomial.

Theorem

Let A and B be matrices of orders m × n and n ×m respectively, where
m ≤ n. Then χBA(λ) = λn−mχAB(λ).
For any two n × n matrices A and B, the characteristic polynomials of AB
and BA are the same.
If AB is square, the non-zero characteristic roots of AB are the same as
those of BA.
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Definition

A complex number α is said to be an eigenvalue of A if there exists a
non-null vector x ∈ Cn such that Ax = αx.
For such an x, called as an eigenvector corresponding to the
eigenvalue α, the line {βx : β ∈ C} is invariant under the map x 7→ Ax.
By an eigenvector of A we mean an eigenvector of A corresponding to
some eigenvalue of A.

Theorem

A number α is an eigenvalue of A iff α is a characteristic root of A.

The preceding theorem shows that eigenvalues are the same as
characteristic roots. However, by ‘the characteristic roots of A’ we
mean the n roots of the characteristic polynomial of A whereas ‘the
eigenvalues of A’ would mean the distinct characteristic roots of A.

Eigenvalues are also known as proper values, latent roots etc. and
eigenvectors are also called the characteristic vectors, latent vectors etc.

P. Sam Johnson (NITK) Eigenvalues and Eigenvectors An Introduction November 3, 2014 6 / 26



Theorem

Let f (λ) be a polynomial and β an eigenvalue of A. Then f (β) is an
eigenvalue of f (A).
More generally, it follows from the preceding theorem that if β is an
eigenvalue of a matrix A and f (λ) is any polynomial such that f (A) = 0,
then f (β) = 0.

Each eigenvalue of an idempotent matrix A is 0 or 1.

Definition

Let α be an eigenvalue of A. Then the subspace of Cn consisting of all
eigenvectors of A corresponding to α together with 0 is called the
eigenspace of A corresponding to α and is denoted by ES(A, α).
The dimension of ES(A, α) is called the geometric multiplicity of α with
respect to A.

Note that ES(A, 0) = N(A), and ES(A, α) ⊆ C(A) if α 6= 0. Clearly the
geometric multiplicity of an eigenvalue α of A is at least 1.
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Real matrix case

If A is a real matrix and α is a real eigenvalue of A then the system
(αI − A)x = 0 has a non-trivial solution over R and so there exists a real
eigenvector of A corresponding to α. There will, of course, be non-real
eigenvectors of A corresponding of α, for example :

√
−1 x .

Suppose now α is a real eigenvalue of a real matrix A and S is the
corresponding eigenspace. Then S has a basis consisting of real vectors
which can even be chosen to be orthogonal. This is because the nullity of
αI − A over C is the same as that over R and the Gram-Schmidt
orthogonalization process gives a real orthonormal basis if we start with a
real basis.

Definition

Let α be an eigenvalue of A. The number of times α appears as a root of
the characteristic equation of A, is called the algebraic multiplicity of α
with respect to A.
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Theorem

For any eigenvalue α of A, the algebraic multiplicity of α with respect to A
is at least the geometric multiplicity of α with respect to A.

Definition

An eigenvalue α of A is said to be regular if the algebraic and the
geometric multiplicities of α with respec to A are equal.
α is said to be simple eigenvalue of A if the algebraic multiplicity of α
with respect to A is 1.

If α is a simple eigenvalue of A, then α is regular and there exists a unique
(upto multiplication by a non-zero scalar) eigenvector of A corresponding
to α.
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Theorem

Let α1, α2, . . . , αk be distinct eigenvalues of A and let x1, x2, . . . , xk be
corresponding eigenvectors. Then x1, x2, . . . , xk are linearly independent.

If S1,S2, . . . ,Sk are the eigenspaces corresponding to distinct eigenvalues
α1, α2, . . . , αk of a matrix A, then S1 + S2 + · · ·+ Sk is direct.

We have seen that if AB is a square matrix then every non-zero eigenvalue
of AB is also an eigenvalue of BA with the same algebraic multiplicity.
The following result shows that the geometric multiplicity also remains the
same.

Theorem

Let α be a non-zero eigenvalue of a square matrix AB, where A and B
need not be square. Then α is an eigenvalue of BA with the same
geometric multiplicity. If x1, x2, . . . , xr are linearly independent
eigenvectors of AB corresponding to α then Bx1,Bx2, . . . ,Bxr are linearly
independent eigenvectors of BA corresponding to α.
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Theorem

Let α be a non-zero eigenvalue of a square matrix AB, where A and B
need not be square. If x1, x2, . . . , xr are linearly independent eigenvectors
of AB corresponding to α then Bx1,Bx2, . . . ,Bxr are linearly independent
eigenvectors of BA corresponding to α.

The above theorem can be used effectively to find eigenvectors of BA
when AB is of smaller order than BA, for example if (B,A) is a
rank-factorization of a singular matrix.

Theorem

Let x be a non-null vector. Then there exists an eigenvector y of A
belonging to the span of {x ,Ax ,A2x , . . .}.

Note that if A is a real matrix with real eigenvalues and if x is real, then
the y obtained is real.
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Theorem

Every n × n matrix A is similar to an upper triangular matrix over C.

The preceding theorem does not hold over R since a real matrix may not
have real eigenvalues

We have proved that if f (λ) is a polynomial and β is an eigenvalue of A,
then f (β) is an eigenvalue of f (A). The preceding theorem is a powerful
tool. The following result is a stronger form of the above statement.

Theorem

Let λ1, λ2, . . . , λn be the characteristic roots of A and let f (λ) be a
polynomial. Then f (λ1), f (λ2), . . . , f (λn) are the characteristic roots of
f (A).

If A is singular, the algebraic multiplicities of 0 with respect to A` and with
respect to A are equal for any positive integer `.
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A polynomial f (λ) is said to annihilate a matrix A if f (A) = 0. The
following result is used to evaluate large powers of A or the value of a
polynomial with large degree in A.

Theorem (Cayley-Hamilton Theorem)

For every matrix A, the characteristic polynomial of A annihilates A.
That is, every matrix satisfies its own characteristic equation.

For any square matrix A, I ,A,A2, . . . ,An2 are linearly dependent in F n×n,
there exists a non-zero annihilating polynomial.

If f annihilates A, αf also annihilates A, so there exists a monic
polynomial annihilating A.
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Suppose k is the minimum degree of a non-zero polynomial annihilating A
and f and g are to monic polynomials of degree k annihilating A. Then
h = f − g also annihilates A and has degree less than k , so h = 0 and
f = g .

The monic polynomial of the least degree which annihilates A is called the
minimum polynomial of A.

By Cayley-Hamilton theorem the degree of the minimal polynomial of an
n × n matrix A is at most n.
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We now show that the minimal polynomial not only has the least degree
among the non-zero polynomials annihilating A but also divides each of
them.

Theorem

The minimal polynomial of A divides every polynomial which annihilates A.
The minimal polynomial of A divides the characteristic polynomial of A.

The preceding theorem shows that once an annihilating polynomial g(λ) is
known, the search for the minimal polynomial can be restricted to the
factors of g(λ).

Example

If A is idempotent then λ2 − λ annihilates A, so the minimal polynomial of
A is λ, λ− 1 or λ2 − λ. If A is neither 0 nor I it follows that the minimal
polynomial of A is λ2 − λ.
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Theorem

A complex number α is a root of the minimal polynomial of A iff α is a
characteristic root of A.

The preceding theorem shows that the distinct roots of the minimal
polynomial coincide with those of the characteristic polynomial.

If the n characteristic roots of A are distinct, then the minimal polynomial
of A coincides with the characteristic polynomial of A. A matrix A with
the latter property is said to be non-derogatory.

Theorem

The minimal polynomial of a diagonal matrix A is
∏k

i=1(λ− di ) where
d1, d2, . . . , dk are the distinct diagonal entries of A.

Caution. The minimal polynomial of a matrix need not be a product of
distinct linear factors.
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Theorem

Similar matrices have the same minimal polynomial.

We have discussed that every matrix is similar to an upper triangular
matrix. But not every matrix is similar to a diagonal matrix.

For example, if

(
0 1
0 0

)
is similar to a diagonal matrix D, then both the

characteristic roots of D are 0 and so D = 0, an impossibility.

We give some necessary and sufficient conditions for a matrix to be similar
to a diagonal matrix and study some nice representation of such matrices.

Definition

A matrix is said to be semi-simple or diagonable if it is similar to a
diagonal matrix.
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If A is the matrix of a linear operator ψ on V with respect to some basis,
then A is semi-simple iff there is a coordinate system (with the same
origin) each of whose coordinate axes is left invariant by ψ.

If A has n linearly independent eigenvectors and P is the matrix formed
with these vectors as the columns, then P−1AP is diagonal.

Conversely, if A is similar to a diagonal matrix (A is semi-simple), there
there exists an invertible matrix P such that
P−1AP = D := diag(d1, d2, . . . , dn).

Then AP = PD, so AP∗j = djP∗j . Thus the columns of P are linearly
independent eigenvectors of A (corresponding to the diagonal entries of D
in the same order).
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In the following theorem we give some more characteristions of a
semi-simple matrix.

Theorem

The following statements about an n × n matrix A are equivalent :

1 A is semi-simple,

2 the minimal polynomial of A is a product of distinct linear factors or,
equivalently, there exists an annihilating polynomial of A which is a
product of distinct linear factors,

3 all the eigenvalues of A are regular,

4 the sum of the eigenspaces of A is Cn,

5 A has n linearly independent eigenvectors.

Theorem (Sufficient conditions)

An n × n matrix with n distinct eigenvalues is semi-simple.
An idempotent matrix is semi-simple.
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In the next theorem we give several useful ways of representing a
semi-simple matrix.

Theorem

The following statements about an n × n matrix A are equivalent :

1 A is semi-simple and has rank r .

2 There exists a non-singular matrix P of order n and a diagonal

non-singular matrix D of order r such that A = P

(
D 0
0 0

)
P−1.

3 There exists non-zero scalars d1, d2, . . . , dr and vectors u1, u2, . . . , ur

and v1, v2, . . . , vr ∈ Cn such that vT
i uj = δij for all i , j and

A =
∑r

i=1 diuiv
T
i .

4 There exist matrices R, S and D of orders n × r , r × n and r × r
respectively such that D is diagonal and non-singular, SR = I and
A = RDS .

We call each of the representation in the above theorem, a spectral
decomposition of the semi-simple matrix A.

Note that they are not unique since there can be different sets of n linearly
independent eigenvectors of A.
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We next study another representation of a semi-simple matrix which is
unique unlike spectral decomposition.

Theorem

Let A be an n × n matrix. Then A is semi-simple iff for some k
(1 ≤ k ≤ n) there exist (complex) numbers α1, α2, . . . , αk and n × n
matrices E1,E2, . . . ,Ek such that the following four conditions are
satisfied:

1 A = α1E1 + α2E2 + · · ·+ αkEk .

2 α1, α2, . . . , αk are distinct and E1,E2, . . . ,Ek are non-null.

3 E1 + E2 + · · ·+ Ek = I .

4 E 2
i = Ei for i = 1, 2, . . . , k.

Further, α’s and E’s are uniquely determined by A thus : α1, α2, . . . , αk

are the distinct eigenvalues of A and if Si denotes the eigen subspace of A
corresponding to αi , then Ei is the projector into Si along

∑
j 6=i Sj .
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In the preceding theorem, E 2
i = Ei for i = 1, 2, . . . , k can be replaced by

any one of the following :

1 EiEj = 0 whenever i 6= j .

2 ρ(E1) + ρ(E2) + · · ·+ ρ(Ek) = n.

The unique representation of a semi-simple matrix A in the form

A = α1E1 + α2E2 + · · ·+ αkEk

where E1 + E2 + · · ·+ Ek = I , E 2
i = Ei for i = 1, 2, . . . , k and

α1, α2, . . . , αk are distinct and E1,E2, . . . ,Ek are non-null, is called the
spectral form or spectral representation of A.
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Exercises

If λ1, λ2, . . . , λr are the eigenvalues of a matrix A, then prove the
following:

(a) kλ1, kλ2, . . . , kλr are the eigenvalues of the matrix kA, where k is a
non-zero scalar.

(b) λp1 , λ
p
2 , . . . , λ

p
r are the eigenvalues of the matrix Ap, where p is any

positive integer.
(c) 1/λ1, 1/λ2, . . . , 1/λr are the eigenvalues of the inverse of A, provided
|A| 6= 0.

(d) |A|/λ1, |A|/λ2, . . . , |A|/λr are the eigenvalues of the adjoint of A.
(e) k + λ1, k + λ2, . . . , k + λr are the eigenvalues of the matrix A + kI ,

where k is any scalar.

Prove that the eigenvalues of a real symmetric matrix are real.

Prove that the eigenvectors corresponding to a distinct eigenvalues of
a real symmetric matrix are orthogonal.
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Prove that the eigenvectors corresponding to distinct eigenvalues of a
matrix are linearly independent.

Prove that an eigenvector cannot correspond to two different
eigenvalues.

Verify Cayley-Hamilton theorem for

(
1 2
4 3

)
and hence evaluate A3

and A−1.

Evaluate A8 − A7 + 5A6 − A5 + A4 − A3 + 6A2 + A− 2I if

A =

1 2 −2
2 5 −4
3 7 −5

 .

For any positive integer, evaluate An, where

(
1 2
4 3

)
.
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Diagonalize the matrix A =

11 −4 −7
7 −2 −5

10 −4 −6

 and hence find A3.

Reduce the matrix A =

 8 −6 2
−6 7 −4
2 −4 3

 to a diagonal form by

orthogonal reduction.
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