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Overview

In the lecture, we disucss a notation for sum and general techniques that
make summation user-friendly.

The following methods are discussed.

repertoire method

summation factor method

perturbation method.
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We will be working with sums of the general form

a1 + a2 + · · ·+ an

where each ak is a number that has been defined somehow. This
“three-dot” notation has the advantage that we can “see” the whole
sum, almost as if it were written out in full, if we have a good enough
imagination. But it can be ambiguous and a bit long-winded.

For example, if 1 + 2 + · · ·+ 2n−1 is supposed to denote a sum of n terms,
not of 2n−1, we should write it more explicitly as

20 + 21 + · · ·+ 2n−1.

The other notation is, notably the delimited form (sigma-notation)

n∑
k=1

ak

because it uses the Greek letter
∑

(upper case sigma).
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This notation tells us to include in the sum precisely those terms ak whose
index k is an integer that lies between the lower and upper limits 1 and n,
inclusive. In words, we “sum over k , from 1 to n.” Joseph Fourier
introduced this delimited

∑
-notation in 1820, and it soon took the

mathematical world by storm.

Joseph Fourier (1768 - 1830)

Each element ak of a sum is called a term. The quantity after
∑

(here
ak) is called the summand. The index variable k is said to be bound to
the

∑
sign.
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Generalized sigma-notation

A generalized sigma-notation is even more useful than the delimited
form. We simply write one or more conditions under the

∑
, to specify

the set of indicies over which summation should take place. It can be
written as ∑

1≤k≤n
an.

For example, we can express the sum of the squares of all odd positive
integers below 100 as follows: ∑

1≤k<100
k odd

k2.
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But the delimited form of this sum

49∑
k=0

(2k + 1)2

is more cumbersome and less clear. Similarly, the sum of reciprocals of all
prime numbers between 1 and N is∑

p≤N
p prime

1

p
.

The delimited form would require us to write

π(N)∑
k=1

1

pk
,

where pk denotes the kth prime and π(N) is the number of primes less
than or equal to N.
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The biggest advantage of general sigma-notation is that we can manipulate
it more easily than the delimited form. For example, suppose we want to
change the index variable k to k + 1. With the general form, we have∑

1≤k≤n
ak =

∑
1≤k+1≤n

ak+1

it is easy to see what is going on, and we can do the substitution almost
without thinking. But with the delimited form, we have

n∑
k=1

ak =
n−1∑
k=0

ak+1

it is harder to see what has happened, and we are more likely to make a
mistake.
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On the other hand, the delimited form is not completely useless. It is
nice and tidy, and we can write it quickly because

n∑
k=1

ak

has seven symbols compared with ∑
1≤k≤n

ak

having eight symbols.

Therefore we will often use
∑

with upper and lower delimiters when we
state a problem or present a result, but we will prefer to work with
relations-under-

∑
when we are manipulating a sum whose index variables

need to be transformed.
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Formally, we write ∑
P(k)

ak

as an abbreviation for the sum of all terms ak such that k is an integer
satisfying a given property P(k). (A “property P(k)” is any statement
about k that can be either true or false.)

For the time being, we will assume that only finitely many integers k
satisfying P(k) have ak 6= 0; otherwise infinitely many nonzero numbers
are being added together, and things can get a bit tricky.

At the other extreme, if P(k) is false for all integers k , we have an
“empty” sum; the value of an empty sum is defined to be zero.
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People are often tempted to write

n−1∑
k=2

k(k − 1)(n − k)

instead of
n∑

k=0

k(k − 1)(n − k)

because the terms for k = 0, 1, and n in this sum are zero.

We will find it advantageous to keep upper and lower bounds on an index
of summation as simple as possible, because sums can be manipulated
much more easily when the bounds are simple. Indeed, the form

∑n−1
k=2

can even be dangerously ambiguous, because its meaning is not at all clear
when n = 0 or n = 1. Zero-valued terms cause no harm, and they often
save a lot of trouble.

P. Sam Johnson Sums and Recurrences 10/32



Kenneth E. Iverson introduced a wonderful idea in his programming
language APL and we will see that it greatly simplifies many things. The
idea is simply to enclose a true-or-false statement in brackets, and to say
that the result is 1 if the statement is true, 0 if the statement is false. For
example,

[p prime] =

{
1 if p is a prime number

0 if p is not a prime number.

Iverson’s convention allows us to express sums with no constraints
whatever on the index of summation, because we can rewrite∑

P(k)

ak

in the form ∑
k

ak [P(k)].
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If P(k) is false, the term ak [P(k)] is zero, so we can safely include it
among the terms being summed.

This makes it easy to manipulate the index of summation, because we
don’t have to fuss with boundary conditions.

If we use Iverson’s convention to write the sum of reciprocal primes ≤ N as∑
n

[p prime] [p ≤ N]/p,

there is no problem of division by zero when p = 0, because our
convention tells us

[0 prime] [0 ≤ N]/0 = 0.
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The three-dots form often suggests useful manipulations, particularly the
combination of adjacent terms, since we might be able to spot a
simplifying pattern if we let the whole sum hang out before our eyes. But
too much detail can also be overwhelming.

Sigma-notation is compact, impressive and often suggestive of
manipulations that are not obvious in three-dots form. When we work with
sigma-notation, zero terms are not generally harmful; in fact, zeros often
make

∑
-manipulation easier.
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Sums and Recurrences

There is an intimate relation between sums and recurrences. First we shall
see how sum is reduced to recurrence.

The sum Sn =
∑n

k=0 ak is equivalent to the recurrence S0 = a0
Sn = Sn−1 + an, for n > 0. Therefore we can evaluate sums in closed
forms.

Example

Consider the following sum-recurrence

R0 = α

Rn = Rn−1 + β + γn, for n > 0.

We find R1 = α + β + γ,R2 = α + 2β + 3γ, and so on. In general, the
solution can be written in the form Rn = A(n)α + B(n)β + C (n)γ, where
A(n),B(n) and C (n) are the coefficients of dependence on the general
parameters α, β and γ.
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Repertoire method

This method tells us to try plugging in simple funcions on Rn, hoping to
find constant parameters α, β and γ, where the solution is especially
simple.

Rn = 1 α = 1, β = 0 = γ A(n) = 1

Rn = n α = 0, β = 1, γ = 0 B(n) = n

Rn = n2 α = 0, β = −1, γ = 2 2C (n)− B(n) = n2

hence 2C (n) = n2+n
2

Thus Rn = α + nβ + n2+n
2 γ.

Exercise

1 Evaluate the sum
∑n

k=0(a + bk) by repertorie method.

Conversely, many recurrences can be reduced to sums.
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Summation Factor

Consider the tower of Hanoi recurrence

T0 = 0

Tn = 2Tn−1 + 1, for n > 0. (1)

(1) is rewritten as

T0/20 = 0

Tn/2n = Tn−1/2n−1 + 1/2n, for n > 0.

Let Sn = Tn/2n. We get S0 = 0,Sn = Sn−1 + 1/2n, for n > 0.

Hence

Sn =
n∑

k=1

1

2k
= 1−

(1

2

)n
.

Thus Tn = 2nSn = 2n − 1.
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Summation Factor : General Technique

Consider the recurrence of the form anTn = (bnTn−1 + cn).

We reduce the above recurrence to a sum. The idea is to multiply both
sides by a summation factor, sn (sn should not be zero).

Choose sn such that snbn = sn−1an−1.

We get snanTn = snbnTn−1 + sncn. That is,

snanTn = sn−1an−1Tn−1 + sncn.

Let Sn = snanTn. We have a sum-recurrence Sn = Sn−1 + sncn. Hence

Sn = s0a0T0 +
n∑

k=1

skck = s1b1T0 +
n∑

k=1

skck .

Therefore the solution to the original recurrence is

Tn =
1

snan

(
s1b1T0 +

n∑
k=1

skck

)
.
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How to find the summation factor sn?

The relation sn = sn−1
an−1

bn
can be unfolded to tell us that the fraction

sn =
an−1an−2 · · · a1
bnbn−1 · · · b2

or any convenient constant multiple of this value, will be a suitable
summation factor for the recurrence

anTn = bnTn−1 + cn.

Example

The tower of Hanoi recurrence has an = 1 and bn = 2. Here sn = 2−n. sn
is to be multiplied both sides of Tn = 2Tn−1 + 1 (n ≥ 0) if we want to
reduce the recurrence to a sum.

Caution! The summation factor method works whenever all the a’s and
all the b’s are nonzero.
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A sorting method : Quick-sort

Quick-sort is one of the most important methods for sorting data inside a
computer. The average number of comparison steps made by quicksort
when it is applied to n items in random order satisfies the recurrence

C0 = 0

Cn = (n + 1) +
2

n

n−1∑
k=0

Ck , for n > 0. (2)

If Cn denotes the average number of moves needed to sort n numbers (in
random order initially), it can be shown that Cn satisfies the recursion.

If (2) is rewritten as
anTn = bnTn−1 + Cn

then the recurrence can be reduced to a sum.
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If we multiply both sides of (2) by n, we can get rid of the division.

nCn = n2 + n + 2
n−1∑
k=0

Ck , for n > 0.

To get rid of the
∑

sign, we have

(n − 1)Cn−1 = (n − 1)2 + (n − 1) + 2
n−2∑
k=0

Ck , for n > 1.

Hence
nCn − (n − 1)Cn−1 = 2n + 2Cn−1, for n > 1.

Therefore the original recurrence for Cn reduces to a much simpler one :

C0 = 0

nCn = (n + 1)Cn−1 + 2n, for n > 0.
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A summation factor sn with an = n, bn = n + 1 and cn = 2n is
sn = 2

(n+1)n . Thus

Cn = 2(n + 1)
n∑

k=1

1

k + 1
.

The sum
n∑

k=1

1

k + 1

is very similar to a quantity that arises frequently in applications. We
denote

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
=

n∑
k=1

1

k
.

The letter H stands for “harmonic”; Hn is a harmonic number (because
the nth harmonic produced by a violin string is the fundamental tone
produced by a string that is 1/k times as long.)
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Cn in terms of Hn

We can express Cn in terms of Hn as follows:

n∑
k=1

1

k + 1
=

∑
1≤k≤n

1

k + 1

=
∑

1≤k−1≤n

1

k

=
∑

2≤k≤n+1

1

k

=
∑

1≤k≤n

1

k
− 1 +

1

n + 1

= Hn −
n

n + 1
.

Thus Cn = 2(n + 1)Hn − 2n.
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Connection between calculus and discrete mathematics

We would like to discuss a connection between calculus (infinite calculus)
and discrete mathematics (finite calculus).

The infinite series (harmonic series)

∞∑
n=1

1

n

is divergent because a subsequence

(s2n)∞n=1

of sequence of partial sums (sn)∞n=1 is stricly increasing and not bounded
above (since

∑∞
n=1

1
2n >

n
2 ).

That is, (Hn)∞n=1 diverges. Also (log n)∞n=1 diverges, by integral test for
sequence.

But we shall prove that the sequence (Hn − log n)∞n=1 converges.
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Let Gn = Hn − log n. Consider y = 1
x .

1

2
+

1

3
+ · · ·+ 1

n
<

∫ n

1

1

x
dx < 1 +

1

2
+ · · ·+ 1

n − 1

Hn − 1 < log n < Hn−1 < Hn

Hence 0 < Hn − log n < 1.
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Euler’s constant

Gn+1 − Gn = [Hn+1 − log(n + 1)]− [Hn − log n]

=
1

n + 1
+ log(

n

n + 1
)

=
1

n + 1
+ log(1− 1

n + 1
)

=
1

n + 1
− 1

n + 1
− 1

2(n + 1)2
− 1

3(n + 1)3
− · · · < 0.

Therefore (Gn) is decreasing and bounded above, hence it converges.

Euler showed that −[ d
dx Γ(x)]x=1 = γ = 0.577215664. The Gamma

function is defined by

Γ(x) =

∫ ∞
0

e−ttx−1dt (x > 0)

The limit of (Gn) is called Euler’s constant and it is nothing by γ. The
numbers e, π, γ are some important constants.
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Manipulation of Sums

The key to success with sums is an ability to change one
∑

into another
that is simpler or closer to some goal.

Let k be any finite set of integers. Sum over the elements of k can be
transformed by using 3 single rules.

∑
k∈K

cak = c
∑
k∈K

ak

distributive law allows us to
move constants in and out of
a
∑

.∑
k∈K

(ak +bk) =
∑
k∈K

ak +
∑
k∈K

bk

associative law allows us to
break a

∑
into two parts, or

to combine two
∑

’s into one.∑
k∈K

ak =
∑

p(k)∈K

p(k)

commutative law says that we
can reorder the terms in any
way as we please.
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We now compute the general sum of an arithmetic progression

S =
∑

0≤k≤n
(a + bk).

By the commutative law, we can replace k by n − k, we get

S =
∑

0≤n−k≤n
(a + b(n − k)) =

∑
0≤k≤n

(a + bn − bk).

These two equations can be added by using the associative law:

2S =
∑

0≤k≤n
[(a + bk) + (a + bn − bk)]

=
∑

0≤k≤n
(2a + bk) = (n + 1)(2a + bn).

Hence

S =
∑

0≤k≤n
(a + bk) =

(
a +

bn

2

)
(n + 1) =

a + (a + bn)

2
(n + 1),

the average of first and last terms times the number of terms.
P. Sam Johnson Sums and Recurrences 27/32



Splitting off terms

The operation of splitting off a term∑
0≤k≤n

ak = a0 +
∑

1≤k≤n
ak for n ≥ 0

is the basis of a perturbation method that often allows us to evaluate a
sum in closed form.

The idea is to start with an unknown sum and call it Sn:

Sn =
∑

0≤k≤n
ak .

We write Sn+1 in two ways:

1 by splitting off its last term

2 by splitting off its first term.
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Splitting off terms

Sn+1 = Sn + an+1 (splitting off last term)

and

Sn+1 =
∑

0≤k≤n+1

ak = a0 +
∑

1≤k≤n+1

ak

Sn+1 =
∑

1≤k≤n+1

ak

=
∑

1≤k+1≤n+1

ak+1

Sn+1 =
∑

0≤k≤n
ak+1 (splitting off first term)

If we express the last sum in terms of Sn, we obtain an equation whose
solution is the sum we seek.
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Exercises

2 Find the sum of the following recursions by permutation method.

(a)

∑
0≤k≤n

axk (b)

∑
0≤k≤n

k2k (c)

∑
0≤k≤n

kxk .

By using elementary techniques of differential calculus, find the closed
form in a completely different way. Note that the derivative of a sum
is the sum of the derivatives of its terms. Start with the equation

n∑
k=0

xk =
1− xn+1

1− x

and take the derivative of both sides with respect to x , we get

n∑
k=0

kxk−1 =
1− (n + 1)xn + nxn+1

(1− x)2
.

This example shows that there is a connection between calculus and
discrete mathematics.P. Sam Johnson Sums and Recurrences 30/32



Exercises

Find the following sums.

3

n∑
k=0

(−1)n−k 4

n∑
k=0

(−1)n−1k 5

n∑
k=0

(−1)n−1k2.

P. Sam Johnson Sums and Recurrences 31/32



References

61 Graham, Knuth and Patashnik, “Concrete Mathematics – A
Foundation for Computer Science”, Pearson Education.

2 Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger,
“A = B ′′, AK Peters Ltd., Wellesley, Massachusetts.

3 Herbert S. Wilf, “Generatingfunctionology”, Third Edition, AK
Peters Ltd., Wellesley, Massachusetts.

P. Sam Johnson Sums and Recurrences 32/32


