sam.nitk.ac.in nitksam@gmail.com

Concrete Mathematics - MA 201 Problem Sheet - 4

- 1. Find a fixed point (say, n_0) of (10110110101011)₂. Also find the smallest positive integer *q* such that $J^q((101101101101011)_2) = n_0$.
- 2. Say true or false with justification: $J(2n + 1) J(2n) = 2$ for any positive integer *n*.
- 3. For what values of *n*, is $J(n) = n/2$ true? Of course, here *n* is even.
- 4. For what values of m , is $2^m 2$ a multiple of 3?
- 5. Write down the binary representation of *n* satisfying " $J(n) = n/2$ " and conclude that cyclicleft-shifting (that is, *J*(*n*)) and one-place ordinary shifting (that is, halving *n*) are same.
- 6. Prove that the functions $A(n)$, $B(n)$ and $C(n)$ of

$$
f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma
$$

where $A(n) = 2^m$, $B(n) = 2^m - 1 - \ell$, $C(n) = \ell$, which solve

$$
f(1) = \alpha
$$

\n
$$
f(2n) = 2f(n) + \beta, \text{ for } n \ge 1
$$

\n
$$
f(2n+1) = 2f(n) + \gamma, \text{ for } n \ge 1.
$$

Here, as usual, $n = 2^m + \ell$ and $0 \le \ell < 2^m$, for $n \ge 1$.

- 7. By induction on *m*, prove that $f(2^m + \ell) = 2^m$.
- 8. Find the values of parameters $(α, β, γ)$, that will define $f(n) = n$.
- 9. Use the repertoire method to solve the general four-parameter recurrence

$$
g(1) = \alpha
$$

 $g(2n + j) = 3g(n) + \gamma n + \beta_j$, for $j = 0, 1$, and $n \ge 1$.

10. Use the repertoire method to solve the general five-parameter recurrence

$$
h(1) = \alpha
$$

$$
h(2n+j) = 4g(n) + \gamma_j n + \beta_j, \text{ for } j = 0, 1, \text{ and } n \ge 1.
$$

11. For the original Josephus values $\alpha = 1$, $\beta = -1$ and $\gamma = 1$, find *J*(100). [Hint : $\beta_0 = \beta = -1$ and $\beta_1 = \gamma = 1$.]

12. Compute $f(19)$ from the recurrence, with initial conditions $f(1) = 34$, $f(2) = 5$,

$$
f(3n) = 10f(n) + 76 \text{ for } n \ge 1
$$

$$
f(3n + 1) = 10f(n) - 2 \text{ for } n \ge 1
$$

$$
f(3n + 2) = 10f(n) + 8, \text{ for } n \ge 1.
$$

- 13. Josephus had a friend who was saved by getting into the next-to-last position. What is *I*(*n*), the number of the penultimate survivor when every second person is executed?
- 14. Suppose there are 2*n* people in a circle; the first *n* are "good guys" and the last *n* are "bad guys!" Show that there is always an integer *m* (depending on *n*) such that, if we go around the circle executing every *m*th person, all the bad guys are first to go. (For example, when $n = 3$ we can take $m = 5$; when $n = 4$ we can take $m = 30$.)
- 15. Suppose that Josephus finds himself in a given position *j*, but he has a chance to name the elimination parameter *q* such that every *q*th person is executed. Can he always save himself?
- 16. Generalizing the above exercise, let's say that a Josephus subset of {1, 2, . . . , *n*} is a set of *k* numbers such that, for some *q*, the people with the other *n* − *k* numbers will be eliminated first. (These are the *k* positions of the "good guys" Josephus wants to save.) It turns out that when $n = 9$, three of the 29 possible subsets are non-Josephus, namely $\{1, 2, 5, 8, 9\}$, $\{2, 3, 4, 5, 8\}$, and $\{2, 5, 6, 7, 8\}$. There are 13 non-Josephus sets when $n = 12$, none for any other values of $n \leq 12$. Are non-Josephus subsets rare for large *n*?
