sam.nitk.ac.in nitksam@gmail.com

Concrete Mathematics - MA 201 Problem Sheet - 4

- 1. Find a fixed point (say, n_0) of $(1011011011011011)_2$. Also find the smallest positive integer q such that $J^q((1011011011011011)_2) = n_0$.
- 2. Say true or false with justification: J(2n+1) J(2n) = 2 for any positive integer n.
- 3. For what values of n, is J(n) = n/2 true? Of course, here n is even.
- 4. For what values of m, is $2^m 2$ a multiple of 3?
- 5. Write down the binary representation of n satisfying "J(n) = n/2" and conclude that cyclic-left-shifting (that is, J(n)) and one-place ordinary shifting (that is, halving n) are same.
- 6. Prove that the functions A(n), B(n) and C(n) of

$$f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma$$

where $A(n) = 2^m$, $B(n) = 2^m - 1 - \ell$, $C(n) = \ell$, which solve

$$f(1) = \alpha$$

$$f(2n) = 2f(n) + \beta, \text{ for } n \ge 1$$

$$f(2n+1) = 2f(n) + \gamma, \text{ for } n \ge 1.$$

Here, as usual, $n = 2^m + \ell$ and $0 \le \ell < 2^m$, for $n \ge 1$.

- 7. By induction on *m*, prove that $f(2^m + \ell) = 2^m$.
- 8. Find the values of parameters (α, β, γ) , that will define f(n) = n.
- 9. Use the repertoire method to solve the general four-parameter recurrence

$$g(1) = \alpha$$

 $g(2n+j) = 3g(n) + \gamma n + \beta_j$, for $j = 0, 1$, and $n \ge 1$.

10. Use the repertoire method to solve the general five-parameter recurrence

$$h(1) = \alpha$$

 $h(2n+j) = 4g(n) + \gamma_j n + \beta_j$, for $j = 0, 1$, and $n \ge 1$.

11. For the original Josephus values $\alpha = 1$, $\beta = -1$ and $\gamma = 1$, find J(100).

[Hint :
$$\beta_0 = \beta = -1$$
 and $\beta_1 = \gamma = 1$.]

12. Compute f(19) from the recurrence, with initial conditions f(1) = 34, f(2) = 5,

$$f(3n) = 10f(n) + 76 \text{ for } n \ge 1$$

 $f(3n+1) = 10f(n) - 2 \text{ for } n \ge 1$
 $f(3n+2) = 10f(n) + 8, \text{ for } n \ge 1.$

- 13. Josephus had a friend who was saved by getting into the next-to-last position. What is I(n), the number of the penultimate survivor when every second person is executed?
- 14. Suppose there are 2n people in a circle; the first n are "good guys" and the last n are "bad guys!" Show that there is always an integer m (depending on n) such that, if we go around the circle executing every mth person, all the bad guys are first to go. (For example, when n = 3 we can take m = 5; when n = 4 we can take m = 30.)
- 15. Suppose that Josephus finds himself in a given position j, but he has a chance to name the elimination parameter q such that every qth person is executed. Can he always save himself?
- 16. Generalizing the above exercise, let's say that a Josephus subset of $\{1,2,\ldots,n\}$ is a set of k numbers such that, for some q, the people with the other n-k numbers will be eliminated first. (These are the k positions of the "good guys" Josephus wants to save.) It turns out that when n=9, three of the 29 possible subsets are non-Josephus, namely $\{1,2,5,8,9\}$, $\{2,3,4,5,8\}$, and $\{2,5,6,7,8\}$. There are 13 non-Josephus sets when n=12, none for any other values of $n\leq 12$. Are non-Josephus subsets rare for large n?
