sam.nitk.ac.in

nitksam@gmail.com

Concrete Mathematics - MA 201 Problem Sheet - 3

- 1. Find J(20), J(40), J(80). In general, find $J(2^m \cdot 5)$, for any positive integer *m*.
- 2. For any positive integer *m*, find $J(2^m)$. (OR) Can we say that the first person will survive whenever *n* is a power of 2?
- 3. Find the survivor's numbers of all even numbers upto 16.
- 4. Find the survivor's numbers of all odd numbers upto 15.
- 5. Using the recurrence relation

$$J(1) = 1$$

$$J(2n) = 2J(n) - 1, \text{ for } n \ge 1$$

$$I(2n+1) = 2J(n) + 1, \text{ for } n \ge 1$$

find *J*(42), *J*(39) and *J*(61).

6. Prove that any positive integer *n* can be written in the form

$$n=2^m+\ell$$

where 2^m is the largest power of 2 not exceeding *n* and where ℓ is remainder, $0 \le \ell \le 2^m - 1$.

7. Using induction, prove that

$$J(2^m + \ell) = 2\ell + 1$$

where 2^m is the largest power of 2 not exceeding *n* and where ℓ is remainder, $0 \le \ell \le 2^m - 1$.. Also find *J*(102). [Note that the induction is on *m*.]

- 8. Find *r* such that $(121)_r = (144)_8$ where *r* and 8 are the bases.
- 9. Find *J*(343) by using binary notation. Analyse the case when $b_{m-1} = 0$.
- 10. Is the following statement correct?

If we start with *n* and iterate the *J* function m + 1 times (applying *J* repeatedly with itself, we get J(n), $J^2(n)$, $J^3(n)$, ..., $J^{m+1}(n)$), then we end up with *n* again. Note that each *n* is an (m + 1)-bit number and we are doing m + 1 one-bit cyclic left-shifts.

- 11. Prove that for a given integer *n*, the following are equivalent:
 - (a) J(n) = n (thus, $n = J(n) = J^2(n) = \cdots$).
 - (b) All bits of *n* are 1.
 - (c) $n = 2^{m+1} 1$, where $n = 2^m + \ell$, $0 \le \ell \le 2^m 1$.
