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Overview

Whole numbers constitute the backbone of discrete mathematics, and we
often need to convert from fractions or arbitrary real numbers to integers.

Kenneth E. Iverson introduced the following notations, “floor” and
“ceiling”, in 1960s.

For any real x ,

Floor Function bxc = the greatest integer ≤ x .

Ceiling Function dxe = the least integer ≥ x .
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Floors and Ceilings

The graphs of floor and ceiling functions form staircase-like patterns above
and below the digaonal line.
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Floors and Ceilings

Since the floor function lies on or below the diagonal line f (x) = x ,
we have bxc ≤ x . Similarly, dxe ≥ x .

The two functions are equivalent precisely at the integer points.

bxc = x ⇐⇒ x is an integer ⇐⇒ dxe = x .

When they differ the ceiling is exactly 1 higher than the floor.

dxe − bxc = [x is not an integer].

x − 1 < bxc ≤ x ≤ dxe < x + 1.

The functions are reflections of each other about both axes:

b−xc = −dxe; d−xe = −bxc.

Thus each is easily expressible in terms of the other.
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Floors and Ceilings

Mathematicians have long had both sine and cosine, tangent and
cotangent, secant and cosecant, max and min; we discussed rising powers
as well as falling powers. Now we have both floor and ceiling.

To prove properties about the floor and ceiling functions, the following
four rules are especially useful.

Exercise

1. Let n be an integer and x be real. Then prove that

bxc = n ⇐⇒ n ≤ x < n + 1
dxe = n ⇐⇒ n − 1 < x ≤ x
bxc = n ⇐⇒ x − 1 < n ≤ x
dxe = n ⇐⇒ x ≤ n < x + 1
bxc ≤ x < bxc+ 1.
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Floor and ceiling brackets are comparatively inflexible

The first two are conseqences of definitions. While the rest are same with
the first two inequalities, so that n is in the middle.

It is possible to move an integer term in or out of a floor (or ceiling) :

bx + nc = bxc+ n,

for any integer n.

But moving out a constant factor cannot be done in general.

For example, bnxc 6= nbxc when n = 2 and x = 1/2.

This means that floor and ceiling brackets are comparatively inflexible.
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Inequality without floor or ceiling corresponds to same
inequality with floor or with ceiling

But any inequality between a real and an integer is equivalent to a floor or
ceiling inequality between integers :

x < n ⇐⇒ bxc < n

n < x ⇐⇒ n < dxe
x ≤ n ⇐⇒ dxe ≤ n

n ≤ x ⇐⇒ n ≤ bxc.

Each inequality without floor or ceiling corresponds to same
inequality with floor or with ceiling.
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Integer and fractional parts of x

The difference between x and bxc is called the fractional part of x
denoted by {x} :

{x} = x − bxc.

We sometimes call bxc the integer part of x , since x = bxc+ {x}.

If a real number x can be written in the form

x = n + θ

where n is an integer and 0 ≤ θ < 1, then n = bxc and θ = {x}.

Exercises

2. Prove that bx + nc = bxc+ n, for any integer n.
Is bx + nc = bxc+ n true, for an arbitrary real n?

3. Prove that for any real numbers x and y, bx + yc is either bxc+ byc
or bxc+ byc+ 1. In general, bxc+ byc ≤ bx + yc ≤ bxc+ byc+ 1.
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Applications of Floor/Ceiling

Question

For a given positive integer n, how many bits are needed for dlg ne when
we express the integer n in radix 2 notation?

We denote the base-2 logarithm of n by lg n. Here powers of 2 play a vital
role. If n satisfies 2m−1 ≤ n < 2m (n has m bits), then m − 1 ≤ lg n < m.
Hence m = blg nc+ 1.

That is, we need blg nc+ 1 bits to express n in binary, for all n > 0.

Exercises

4. Prove that dlg(n + 1)e bits are needed to express n in binary, for all
n > 0.

5. What is dbxce for any real number x?

6. Say true or false with justification : All expressions with an innermost
bxc surrounded by any number of floors or ceilings are same.
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Question

Prove or disprove the assertion

b
√
bxcc = b

√
xc, for any real x ≥ 0. (1)

If x is an integer, then x = bxc. Hence (1) is true.

If nothing can be said about (1), we can think of giving counter example
which shows that (1) is not true in general.

Even if the assertion (1) is true, our search for a counter example often
leads us to a proof, as soon as we see why a counter example is impossible.
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Question

Prove or disprove the assertion

b
√
bxcc = b

√
xc, for any real x ≥ 0. (2)

Suppose the assertion (2) is true. Then we have the following steps:

start with b
√
bxcc

strip off the outer floor, we get
√
bxc

strip off the square root, we get bxc
remove the inner floor, we get x

take square root, we get
√
x

add back the outer floor b
√
xc.

If we get the one what we started with, then (2) is proved.
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Verification / Proof

m = b
√
bxcc ⇐⇒ m ≤

√
bxc < m + 1

(since bxc = n ⇐⇒ n ≤ x < n + 1)

⇐⇒ m2 ≤ bxc < (m + 1)2

since all the expressions are non-negative

⇐⇒ m2 ≤ x < (m + 1)2

⇐⇒ m ≤
√
x < m + 1

⇐⇒ m = b
√
xc

Therefore b
√
bxcc = b

√
xc.
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Exercise

7. Prove that d
√
dxee = d

√
xe for any real x ≥ 0.

Theorem

Let f (x) be a any continuous monotonically increasing function with the
property that if f (x) is an integer, then x is an integer. Prove that

bf (bxc)c = bf (x)c

and
df (dxe)e = df (x)e,

whenever f (x), f (bxc) and f (dxe) are defined.

Example

If f (x) = k
√
x, then b k

√
bxcc = b k

√
xc. Verify f satisfies all assumptions in

the above theroem for f .
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Proof of the theorem

We discuss the proof for the ceiling function.

If x = dxe, then there is nothing to prove.

Suppose x < dxe. Then f (x) < f (dxe) since f is increasing. Then
df (x)e < df (dxe)e since d e is non-decreasing.

Continuity of f gives that there is a number y such that x ≤ y < dxe and
f (y) = df (x)e. By a special propertiy of f (if f (x) is an integer, then x is
an integer), y is an integer such that x ≤ y < dxe.

But there cannot be an integer strictly between x and dxe. This
contradiction proves that df (x)e = df (dxe)e.
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Exercises

8. Prove that

bx + m

n
c = bbxc+ m

n
c

and

dx + m

n
e = ddxe+ m

n
e

if m and n are integers and the denominator n is positive.

9. Prove or disprove the statement

d
√
bxce = d

√
xe for any real x ≥ 0. (3)

Does the assertion (3) work for x = π, x = e and x = 1+
√
5

2 ?

In Exercise (8), let m = 0; we have bbbx/10cc/10c/10 = bx/1000c.
Dividing thrice by 10 and throwing off digits is the same as dividing by
1000 and tossing the remainder
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Different levels of problems : Levels 0, 1 and 2

Level 0 : Something where no proof is required, only a lucky guess.

Level 1 : Given an explicit object X and an explicit property p(x),
prove that p(x) is true.

For example, “Prove that bπc = 3.” Proof involves arithmetic.

Level 2 : Given an explicit set X and an explicit property p(x), prove
that p(x) is true for all x ∈ X .

For example, “Prove that bxc ≤ 3 for all real x .”

Proof must be general, should be algebraic, not just arithmetic.
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Different levels of problems : Level 3

Level 3 : Given an explicit set X and an explicit property p(x), prove
or disprove that p(x) is true for all x ∈ X .

For example, “Prove or disprove that d
√
bxce = d

√
xe for all real x ≥ 0.”

Here there is an additional level of uncertainty.

If the statement is false, our job is to find a counter example.

If the statement is true, we must find a proof as in level 2.
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Different levels of problems : Level 4

Level 4 : Given an explicit set X and an explicit property p(x), find a
necessary and sufficient condition q(x) that p(x) is true.

For example, “Find a necessary and sufficient condition bxc ≥ dxe.”

The problem is to find an equivalent property (statement that is as simple
as possible) for p(x) .

For example, in this case, “bxc ≥ dxe ⇐⇒ x is an integer.”

The extra element of discovery needed to find q(x) makes this sort of
problem more difficult.

Finally, a proof must be given that p(x) is true iff q(x) is true.
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Different levels of problems : Level 5

Level 5 : Given a explicit set X , find an interesting property p(x) of its
elements. This is real mathematics.

Whereas the statement d
√
bxce = d

√
xe for any real x ≥ 0 can be

converted from level 3 to level 4, as follows :

A necessary and sufficient condition that d
√
bxce = d

√
xe is either x is an

integer or
√
bxc is not.
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Various Types of Intervals

The set of real numbers x such that α ≤ x ≤ β, denoted by [α, β], is
called a closed interval because it contains both endpoints α and β.

The set of real numbers x such that α < x < β, denoted by (α, β), is
called an open interval.

And intervals [α, β) and (α, β] which contain just one endpoint are defined
similarly, are called half-open.

Half-open intervals are almost always nicer than open or closed
intervals. For example, they are additive – we can combine the
half-open intervals [α, β) and [β, γ) to form the half-open interval [α, γ).

This would not work with open intervals because the point β would be
excluded, and it could cause problems with closed intervals because β
would be included twice.

P. Sam Johnson Integer Functions 20 / 50



Question

How many integers are contained in half-open intervals?

If α and β are integers, then [α, β) contains the β − α integers
α, α+ 1, . . . , β − 1, assuming that α ≤ β. Similarly, (α, β) contains β − α
integers in such a case.

Suppose α and β are arbitrary reals. We have

α ≤ n < β ⇐⇒ dαe ≤ n < dβe
α < n ≤ β ⇐⇒ bαc < n ≤ bβc,

where n is an integer. The intervals [α, β) contains exactly dβe − dαe
integers, and (α, β] contains bβc − bαc because

the intervals on the right have integer end points,

the intervals on the left have real end points, and

both intervals are having the same number of integers.
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By the way, there is a mnemonic for remembering which case uses floors
and which uses ceilings.

So by Murphys’s law, the correct result is the opposite of what we would
expect – ceilings for [α, β) and floors for (α, β].

Exercise

10. Prove the following:

[α, β] (α ≤ β) contains bβc − dαe+ 1 integers,
(α, β] (α ≤ β) contains exactly bβc − bαc integers,
(α, β) (α < β) contains exactly dβe − bαc − 1 integers.
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There is a casino in which there is a roulette wheel with one thousand
slots, numbered 1 to 1000.

If the number n that comes up on a spin is divisible by the floor of its cube
root (n is a multiple of 3

√
n), then the number is a winner, we get Rs.5,

otherwise, we lose Re.1.

We can compute the average winnings. If W is the number of winners
during 1000 plays, then L = 1000−W is the number of losers.
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If each number comes up once during 1000 plays, we win Rs.5W and
lose Rs.L, so the average winning will be

5W − L

1000
=

5W − (1000−W )

1000
=

6W − 1000

1000
.

Question

How can we count the number of winners among 1 through 1000?

The numbers from 1 through 23 − 1 = 7 are all winners because b 3
√
nc = 1

for each.

Among the numbers 23 = 8 through 33 − 1 = 26, only the even numbers
are winners.

And among 33 = 27 through 43 − 1 = 63, only those divisible by 3 are.
And so on.
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By Iverson’s convention, we have

W =
1000∑
n=1

[n is a winner] =
∑

1≤n≤1000

[b 3
√
nc divides n]

=
∑
k,n

[k = b 3
√
nc] [k divides n] [1 ≤ n ≤ 1000]

=
∑
k,n,m

[k3 ≤ n < (k + 1)3] [n = km] [1 ≤ n ≤ 1000]

= 1 +
∑
k,m

[k3 ≤ km < (k + 1)3] [1 ≤ k < 10]
{
Note that m = 100 when k = 10

}
= 1 +

∑
k,m

[m ∈ [k2,
(k + 1)3

k
)] [1 ≤ k < 10]

= 1 +
∑

1≤k<10

(
d (k + 1)3

k
e − dk2e

)
= 1 +

∑
1≤k<10

(
dk2 + 3k + 3 + 1/4e − dk2e

)
= 1 +

∑
1≤k<10

(3k + 4) = 1 +
7 + 31

2
9 = 172.
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We have answered the following question :

Question

How many integers n, where 1 ≤ n ≤ 1000, satisfy the relation b 3
√
nc/n?

Let us discuss the general case for large number N. We denote R = b 3
√
Nc.

The total number of winners for general N comes to

W =
∑

1≤k<R

(3k + 4) +
∑
m

[R3 ≤ Rm ≤ N]

=
1

2
(7 + 3R + 1)(R − 1) +

∑
m

[
[m ∈ [R2,N/R]

]
=

3

2
R2 +

5

2
R − 4 +

∑
m

[
[m ∈ [R2,N/R]

]
=

3

2
R2 +

5

2
R − 4 + bN/Rc − dR2e+ 1

=
3

2
R2 +

5

2
R − 4 + bN/Rc − R2 + 1.
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Hence the formula (for number of winners) is

W = bN/Rc+
1

2
R2 +

5

2
R − 3

where R = b 3
√
Nc, gives the general answer for a wheel of size N.
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Spectrum of a real number

We define the spectrum of a real number α to be an infinite multiset (a
set can have repeated elements) of integers :
Spec(α)={bαc, b2αc, b3αc, . . .}.

Exercise

11. Find Spec(12), Spec(
√

2) and Spec(2 +
√

2).

Theorem

Prove that Spec(α) 6= Spec(β), when α 6= β. That is, distinct real
numbers have distinct spectra.

Proof. Without loss of generality, we assume that α < β. Then there
exists a positive integer m such that m(β − α) ≥ 1. Hence mβ −mα ≥ 1
and bmβc > bmαc. Spec(β) has fever than m elements ≤ bmαc while
Spect(α) has at least m.
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Example

Spec(1)={1, 2, 3, . . .}
Spec(3)={3, 6, 9, . . .}
Spec(12)={0, 1, 1, 2, 2, 3, 3, 4, . . .}

Spec( 1
k )=

{
0, . . . , 0 (k − 1 times), 1, . . . , 1 (k times),

}

Suppose bmαc = k . Then k ≤ mα < k + 1 which implies that
k
m ≤ α <

k
m + 1

m .

If α ≥ 1, then spec(α) is an ordinary set (not a multiset), no
repetitions.

If m 6= n, then bmαc 6= bnαc.
Let α be real > 1. Then the fractional parts of mα are all distinct
(m ≥ 1) iff α is irrational.

If α is irrational, them the fractional parts of mα are uniformly
distributed in (0, 1).
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Partition of the positive integers

If the set of positive integers is the disjoint union of Spec(α) and Spec(β),
then we say that these spectra form a partition of the positive integers.

We denote the number of elements in Spec(α) that are ≤ n by N(α, n).

If we show that
Spec(α) and Spec(β) are disjoint, and N(α, n) + N(β, n) = n, then

Spec(α) and Spec(β) form a partition of the positive integers.

We can find N(α, n) as follows :

N(α, n) =
∑
k>0

[bkαc ≤ n]

=
∑
k>0

[bkαc < n + 1]

since m ≤ n ⇐⇒ m < n + 1 for all integers m, n.
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This law is used to change “≤” to “<”, so that floor bracket can be
removed in the next step.

N(α, n) =
∑
k>0

[kα < n + 1]

=
∑
k>0

[0 < k < (n + 1)/α]

= d(n + 1)/αe − 1
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Question

Do Spec(
√

2) and Spec(2 +
√

2) form a partition of the positive integers?

Verification: Let n be a positive integer.

N(
√
2, n) + N(2 +

√
2, n) = n ⇐⇒ dn + 1√

2
e − 1 + d n + 1

2 +
√
2
e − 1 = n

⇐⇒ bn + 1√
2
c+ b n + 1

2 +
√
2
c = n

⇐⇒ n + 1√
2
−
{n + 1√

2

}
+

n + 1

2 +
√
2
−
{ n + 1

2 +
√
2

}
= n

⇐⇒
{n + 1√

2

}
+
{ n + 1

2 +
√
2

}
= 1

⇐⇒ The above assertion is true because these are

the fractional parts of 2 non-integers

that add up to the integer n + 1.

Thus Spec(
√

2) and Spec(2 +
√

2) form a partition of the positive
integers.
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Floor/Ceiling Recurrence

Consider the recurrence relation

K0 = 1

Kn+1 = 1 + min{2Kbn/2c, 3Kbn/3c} for n ≥ 0.

The sequence of numbers 1, 3, 3, 4, 7, 7, 7, 9, 9, 10, 13, . . . are called the
knuth numbers.

We discuss the following the statement:

Question

Prove or disprove that Kn ≥ n, for all n ≥ 0.

The first few K ’s just listed do satisfy the inequality, so there is a good
chance that it is true in general.
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Let us try an induction proof.

K0 = 1 ≥ 0.

Assume that the inequality holds for all values up through some fixed
non-negative integer n.

Claim : Kn+1 ≥ n + 1.

Kn+1 = 1 + min{2Kbn/2c, 3Kbn/3c} since n/2 < n, Kbn/2c ≥ bn/2c and
Kbn/3c ≥ 3bn/3c.

However, 2bn/2c can be as small as n − 1, and 3bn/3c can be as small as
n − 2.

Kn+1 = 1 + min{2Kbn/2c, 3Kbn/3c}
≥ 1 + min{n − 1, n − 2}
= 1 + n − 2 = n − 1.

This falls far short for Kn+1 ≥ n + 1.
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Let us now try to disprove it. If we can find an integer n0 such that either
2bn0/2c < n0 or 3bn0/3c < n0, then we get

Kn0+1 = 1 + min{2Kbn0/2c, 3Kbn0/3c} < 1 + n0.

Is this possible to find such an integer n0?

Question

Why recurrence relation (involving floors and/or ceilings) is needed?

Recurrence relations involving floors and/or ceilings arise often in
computer science, because algorithms based on the important technique of
“divide and conquer” often reduce a problem of size n to the solution of
similar problems of integer sizes that are fraction of n.
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For example, one way to sort n records if n > 1, is to divide them into two
approximately equal parts, one of size dn/2e and the other of size bn/2c.
Note that dn/2e+ bn/2c = n.

After each part has been sorted separately (by the same method, applied
recursively), we can merge the records into their final order by doing at
most n − 1 further comparisons.

Therefore the total number of comparisons performed is at most f (n),
where

f (1) = = 0

f (n) = f (dn/2e) + f (bn/2c) + n − 1 for n > 1.
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The Josephus problem has a similar recurrence, which can be cast in the
form

J(1) = 1

J(n) = 2J(bn/2c)− (−1)n for n > 1.

Let us consider the actual Josephus problem in which every third person is
eliminated, instead of every second.

We have a recurrence

J3(n) = d3

2
J3
(
b2

3
nc
)

+ anemod n + 1,

where an = −2,+1, or −1
2 according as n mod 3 = 0, 1, or 2. But this

recurrence is too horrible to purse.
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Another approach to the Josephus problem

There is another approach to the Josephus problem that gives a much
better setup.

Whenever a person is passed over, we can assign a new number.

Thus, 1 and 2 become n + 1 and n + 2, then 3 is executed;

4 and 5 become n + 3 and n + 4, then 6 is executed;

...

3k + 1 and 3k + 2 become n + 2k + 1 and n + 2k + 2, then 3k + 3 is
executed;

...

then 3n is executed (or left to survive).
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Another approach to the Josephus problem

For example, when n = 10 the numbers are

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22

23 24 25
26 27
28
29
30

The kth person eliminated ends up with number 3k . So we can figure out
who survivor is if we can figure out the original number of person
numbered 3n.

P. Sam Johnson Integer Functions 39 / 50



Solution to the Josephus problem

If N > n, person numbered N must have had a pervious number, and we
can find it as follows:

We have N = n + 2k + 1 or N = n + 2k + 2, hence k = b(N − n − 1)/2c;
the pervious number was 3k + 1 or 3k + 2, respectively.

That is, it was 3k + (N − n − 2k) = k + N − n. Hence we can calculate
the survivor’s number J3(n) as follows:

N := 3n;

while N > n do N := bN−n−12 c+ N − n;

J3(n) := N.

This is not a closed form for J3(n); it is not even a recurrence. But at
least it tells us how to calculate the answer reasonably fast, if n is large.
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Solution to the Josephus problem

Fortunately there is a way to simplify this algorithm if we use the variable
D = 3n + 1− N in place of N. This change in notation corresponds to
assigning numbers from 3n down to 1, instead of from 1 up to 3n.

Then the complicated assignment to N becomes

D := 3n + 1−
(
b(3n + 1− D)− n − 1

2
c+ (3n + 1− D)− n

)
= n + D − b2n − D

2
c = D − b−D

2
c = D + dD

2
e = d3

2
De,

and we can rewrite the algorithm as follows:

D := 1;

while D ≤ 2n do D := d32De;

J3(n) := 3n + 1− D.
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Solution to the generalized Josephus problem

This looks much nicer, because n enters the calculation in a very simple
way.

In fact, we can show by the same reasoning that the survivor Jq(n) when
every qth person is eliminated can be calculated as follows:

D := 1;

while D ≤ (q − 1)n do D := d q
q−1De;

Jq(n) := qn + 1− D.

When q = 2, this makes D grow to 2m+1 when n = 2m + `.

Hence J2(n) = 2(2m + `) + 1− 2m+1 = 2`+ 1.
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Solution to the generalized Josephus problem

We compute a sequence of integers that can be defined by the following
recurrence

D
(q)
0 = 1

D
(q)
n = d q

q − 1
D

(q)
n−1e for n > 0.

These numbers D
(q)
n for n ≥ 0 do not seem to relate to any familiar

functions in a simple way, expect when q = 2; hence they probably do not
have a nice closed form.

But if we are willing to accept the sequence D
(q)
n as “known,” then it is

easy to describe the solution to the generalized Josephus problem:

The survivor Jq(n) is qn + 1− D
(q)
k , where k is as small as possible such

that D
(q)
k > (q − 1)n.
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Exercises

12. In Josephus problem, we represented an arbitrary positive number n in
the form n = 2m + `, where 0 ≤ ` < 2m. Give explicit formulas for `
and m as functions of n, using floor and / or ceiling brackets.

13. What is a formula for the nearest integer to a given real number x?
In case of ties, when x is exactly halfway that rounds

(a) up, that is, to dxe
(b) down, that is, to bxc.

14. Evaluate bbmαcn/αc, when m and n are positive integers and α is an
irrational number greater than n.

15. Find a necessary and sufficient condition that For example,
bnxc 6= nbxc when n is a positive integer.

16. Prove the Dirichlet box principle :
If n objects are put into m boxes, some box must contain ≥ dn/me
objects, and some box must contain ≤ bn/mc.
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Exercises

17. Can something be said about bf (x)c when f (x) is a continuous
monotonically decreasing function that takes integer values only when
x is an integer?

18. Show that the expression

d2x + 1

2
e − d2x + 1

4
e+ b2x + 1

4
c

is always either bxc or dxe. In what circumstances does each case
arise?

19. Let α and β be positive real numbers. Prove that Spec(α) and
Spec(β) partition the positive integers if and only if α and β are
irrational and 1

α + 1
β = 1.

20. Find a necessary and sufficient condition on the real number b > 1
such that blogb xc = blogbbxcc for all real x ≥ 1.
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Exercises

21. Find the sum of all multiples of x in the closed interval [α, β], when
x > 0.

22. How many of the numbers 2m, for 0 ≤ m ≤ M, have leading digit 1
in decimal notation?

23. Evaluate the sums

Sn =
∑
k≥1
b n

2k
+

1

2
c

and

Tn =
∑
k≥k

2kb n
2k

+
1

2
c2.

24. Show that b
√

2n + 1
2c is the nth element of the sequence

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6 · · · .

The sequence has exactly k occurrences of ‘k’, for k > 1.
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Exercises

25. Prove that for any real x and positive integer m,

bbxc
m
c = b x

m
c.

26. Prove that for any real x,

(a) bxc+ bx + 1
2c = b2xc

(b) bx + 1
3c+ bx + 2

3c = b3xc
(c) bxc+ bx + 1

mc+ bx + 2
mc+ · · ·+ bx + m−1

m c = bmxc.
27. Prove that spectrum of

√
2 contains infinitely many powers of 2.

That is, prove that there are infinitely many integers n ≥ 1 such that
bn
√

2c = 2k for some k > 0.
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Exercises

28. Solve the recurrence

Xn = n, for 0 ≤ n < m,

Xn = Xn−m + 1, for n ≥ m.

29. Solve the recurrence

a0 = 1,

an = an−1 + b√an−1c, for n > 0.

30. Let α and β be positive real numbers. We have proved that Spec(α)
and Spec(β) partition the positive integers if and only if α and β are
irrational and 1

α + 1
β = 1.

This establishes an interesting relation between the two multisets
Spec(α) and Spec(α/(α− 1)), when α is any irrational > 1, because
and 1

α + α−1
α = 1.

Find (and prove) an interesting relation between the two multisets
Spec(α) and Spec(α/(α + 1)), where α is any positive real number.
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Exercises

31. Prove or disprove : bxc+ byc+ bx + yc ≤ b2xc+ b2yc.
32. Prove that

∞∑
k=1

b n
2k

+
1

2
c = n.

33. Let ‖x‖ = min(x − bxc, dxe − x) denote the distance from x to the
nearest integer.
What is the value of ∑

k

2k‖x/2k‖2?
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