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Overview

The most powerful way to deal with sequences of numbers is to
manipulate infinite series that “generate” those sequences.

A function (series) generated by the sequence is called generating function.

An important use of generating functions is to solve recurrence relations.
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Generating Function

Given an infinite sequence 〈a0, a1, a2, . . .〉, we have a power series in an
auxilary variable z ,

A(z) = a0 + a1z + a2z
2 + · · · =

∑
k≥0

akz
k .

A(z) is called a generating function. It is a single quantity which
represents an entire infinite sequence.

The sequences 〈 1n!〉, 〈1〉, 〈1, α, α
2, . . .〉 have ez , 1

1−z and 1
1−αz as their

generating functions respectively.
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Convolution of sequences

If A(z) is any power series
∑

k≥0 akz
k (A(z) is the generating function for

〈a0, a1, a2, . . .〉), then the coefficient of zn in A(z) is denoted by

[z ]nA(z).

Let A(z) and B(z) be the generating functions for 〈a0, a1, a2, . . .〉 and
〈b0, b1, b2, . . .〉 respectively.

Then the product A(z)B(z) (denoted by cn) is

cn = a0bn + a1bn−1 + · · ·+ anb0 =
n∑

k=0

akbn−k .

The sequence 〈cn〉 is called the convolution of the sequences 〈an〉 and
〈bn〉.
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Some useful identities

Two sequences are “convolved” by forming the sums of all products,
whose subscripts add up to a given amount.

Convolution of sequences corresponds to multiplication of their
generating functions.

Generating functions give us powerful ways to discover and / or prove
identities: The binomial theorem gives the following:

(1 + z)r =
∑
k≥0

(
r

k

)
zk

and

(1 + z)s =
∑
k≥0

(
s

k

)
zk .

If we multiply these together, we get another generating function:

(1 + z)r (1 + z)r = (1 + z)r+s .
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Some useful identities

Equating coefficients of zn on both sides of this equation gives us∑
k≥0

(
r

k

)(
s

n − k

)
=

(
r + s

n

)
.

We know that the generating function for the sequence

〈(−1)n
(
r

n

)
〉 = 〈

(
r

0

)
,−
(
r

1

)
,

(
r

2

)
, . . .〉

is (1− z)r . Equating coefficients of zn from

(1− z)r (1 + z)r = (1− z2)r

gives the equation∑
k≥0

(
n

k

)(
r

n − k

)
(−1)k = (−1)n/2

(
r

n/2

)
[n even].
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Some important identities

The following important identities arise so frequently in applications.

1

(1− z)n+1
=
∑
k≥0

(
n + k

n

)
zk , integer n ≥ 0 (1)

zn

(1− z)n+1
=
∑
k≥0

(
k

n

)
zk , integer n ≥ 0. (2)

(21) comes from

(1− z)−(n+1) =
∑
k≥0

(
−n − 1

k

)
(−1)kzk =

∑
k≥0

(
k + n

k

)
zk .

(2) comes from (21) multiplied by zn, that is, “shifted right” by n places.
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When n = 0, we get the geometric series

1

1− z
= 1 + z + z2 + z3 + · · · =

∑
k≥0

zk .

This is the generating function for the sequence 〈1, 1, . . .〉, and it is
especially useful because the convolution of any other sequence
〈b0, b1, . . .〉 with 〈1, 1, . . .〉 is the sequence of sums

〈b0, b0 + b1, b0 + b1 + b2, . . .〉.

That is, if B(z) is the generating function for the sequence 〈b0, b1, . . .〉,
then B(z)/(1− z) is the generating function for the sequence
〈b0, b0 + b1, b0 + b1 + b2, . . .〉.

Exercise 1.

1. If A(z) is the generating function for the sequence 〈a0, a1, a2, . . .〉,
then find the sequence corresponding to A(z)(1− z).
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Reshaping “generating functions” by adding / shifting
some generating functions.

We can view the generating function G (z), a function of a complex
variable z .

We can reshape generating functions by adding, shifting, changing
variable, differentiating, integrating, and multiplying generating functions.

αF (z) + βG (z) =
∑
n

(αfn + βgn)zn

zmG (z) =
∑
n

gn−mz
n, integer m ≥ 0

G (cz) =
∑
n

cngnz
n
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Reshaping “generating functions” changing variable,
differentiating, integrating, and multiplying some
generating functions.

G ′(z) =
∑
n

ngnz
n

∫ z

0
G (t) dt =

∑
n≥1

1

n
gn−1z

n

F (z)G (z) =
∑
n

(∑
k

fkgn−k

)
zn

G (z)− g0 − g1z − · · · − gm−1z
m−1

zm
=

∑
n≥0

gn+mz
n, integer m ≥ 0

1

1− z
G (z) =

∑
n

(∑
k≥n

gk

)
zn.
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Closed forms

Two kinds of “closed forms” come up when we work with generating
functions. We observed that a generating function

G (z) =
∑
n≥0

gnz
n

has a sequence 〈g0, g1, g2, . . .〉 and vice-versa.

We have a closed form for G (z), expressed in terms of z , or we have a
closed form for gn, expressed in terms of n.
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Each of the generating functions in the following table is important
enough to be remembered.

Many of them are special cases of the others and many of them can be
derived quicky from the others by using the basic operations.

For example, let us consider the sequence 〈1, 2, 3, . . .〉 whose generating
function 1

(1−z)2 is often useful.

It is the special case m = 1 of〈
1,

(
m + 1

m

)
,

(
m + 2

m

)
,

(
m + 3

m

)
, . . .

〉
;

it is also the special case c = 2 of〈
1, c ,

(
c + 1

2

)
,

(
c + 2

3

)
, . . .

〉
.
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We can derive it from the generating function for 〈1, 1, 1, . . .〉 by taking
cumulative sums, and by differentiation also.

The sequence 〈1, 0, 1, 0, . . .〉 is another one whose generating function can
be obtained by many ways. We can obviously derive the formula∑

n

z2n =
1

(1− z)2

by substituting z2 for z in the identity∑
n

zn =
1

1− z
;

we can also apply cumulative summation to the sequence
〈1,−1, 1,−1, . . .〉, whose generating function is 1

1+z , getting

1

(1 + z)(1− z)
=

1

(1− z2)
.
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Simple sequences and their generating functions

Sequence Generating Closed
Function Form

〈1, 0, 0, 0, . . .〉
∑
n≥0

[n = 0] zn 1

〈0, . . . , 0, 1, 0, . . .〉
∑
n≥0

[n = m] zn zm

〈1, 1, 1, 1, . . .〉
∑
n≥0

zn 1
1−z

〈1,−1, 1,−1, . . .〉
∑
n≥0

(−1)nzn 1
1+z

〈1, 0, 1, 0, . . .〉
∑
n≥0

[2\n]zn 1
1−z2

〈1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . .〉
∑
n≥0

[m\n]zn 1
1−zm
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Simple sequences and their generating functions

Sequence Generating Closed
Function Form

〈1, 2, 3, 4, 5, 6, . . .〉
∑
n≥0

(n + 1)zn 1
(1−z)2

〈1, 2, 4, 8, 16, 32 . . .〉
∑
n≥0

2nzn 1
1−2z

〈1, 4, 6, 4, 1, 0, 0, . . .〉
∑
n≥0

(
4

n

)
zn (1 + z)4

〈1, c ,
(c
2

)
,
(c
3

)
. . .〉

∑
n≥0

(
c

n

)
zn (1 + z)c

〈1, c ,
(c+1

2

)
,
(c+2

3

)
. . .〉

∑
n≥0

(
c + n − 1

n

)
zn 1

(1−z)c
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Simple sequences and their generating functions

Sequence Generating Closed
Function Form

〈1, c , c2, c3, . . .〉
∑
n≥0

cnzn 1
1−cz

〈1,
(m+1

m

)
,
(m+2

m

)
,
(m+3

m

)
, . . .〉

∑
n≥0

(
m + n

m

)
zn 1

(1−z)m+1

〈0, 1, 12 ,
1
3 ,

1
4 , . . .〉

∑
n≥1

1

n
zn ln 1

1−z

〈0, 1,−1
2 ,

1
3 ,−

1
4 , . . .〉

∑
n≥1

(−1)n+1

n
zn ln(1 + z)

〈1, 1, 12 ,
1
6 ,

1
24 ,

1
120 . . .〉

∑
n≥1

1

n!
zn ez

P. Sam Johnson Generating Function 16/26



Solving Recurrences

Given a sequence 〈gn〉 that satisfies a given recurrence, we seek a closed
form for gn in terms of n. A solution of this problem via generating
functions proceeds in four steps:

1. Write down a single equation that expresses gn in terms of other
elements of the sequence. This equation should be valid for all
integers n, assuming that g−1 = g−2 = · · · = 0.

2. Multiply both sides of the equation by zn and sum over all n. This
gives, on the left, the sum

∑
n gnz

n, which is the generalization
function G (z). The right-hand side should be manipulated so that it
becomes some other expression involving G (z).

3. Solve the resulting equation, getting a closed form for G (z).

4. Expand G (z) into a power series and read off the coefficient of zn;
this is a closed form for gn.

This method works because the sigle function G (z) represents the entire
sequence 〈gn〉 in such a way that many manipulations are possible.
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Football victory problem

A group of n fans of a “winning football team” throw their hats high into
the air. The hats come back randomly, one hat to each of the n fans.

Question: How many ways are there (denoted by h(n, k)) for exactly k
fans to get their own hats back?

For example, if n = 4 and if the hats and fans are named A,B,C ,D, we
denote

BCDA

when fans A,B,C ,D receive the hats B,C ,D,A respectively.

There are 4! = 24 possible ways.

P. Sam Johnson Generating Function 18/26



Football victory problem

The number of rightful owners are as follows:
ABCD 4 BACD 2 CABD 1 DABC 0
ABDC 2 BADC 0 CADB 0 DACB 1
ACBD 2 BCAD 1 CBAD 2 DBAC 1
ACDB 1 BCDA 0 CBDA 1 DBCA 2
ADBC 1 BDAC 0 CDAB 0 DCAB 0
ADCB 2 BDCA 1 CDBA 0 DCBA 0

Therefore

h(4, 4) = 1

h(4, 3) = 0

h(4, 2) = 6

h(4, 1) = 8

h(4, 0) = 9.
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Football victory problem

We can determine h(n, k) by noticing that if the number of ways to
choose k lucky hat owners, namely

(n
k

)
, times the number of ways to

arrange the remaining n − k hats so that none of them goes to the right
owners, namely h(n − k , 0).

A permutation is called a derangement if it moves every item and the
number of derangements of n objects is sometimes denoted by symbol n¡
(read “n subfactorial”.)

Theorefore
h(n − k, 0) = (n − k)¡,

and we have the general formula

h(n, k) =

(
n

k

)
h(n − k, 0) =

(
n

k

)
(n − k)¡.
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Football victory problem

There is an easy way to get a recurrence, because the sum of h(n, k) for
all k is the total number of permutations of n hats;

n! =
∑
k

h(n, k) =
∑
k

(
n

k

)
(n − k)¡. (3)

The problem can be solved with generating functions in an interesting way.

The equation (3) becomes

n! =
∑
k

h(n, k) =
∑
k

n!

k!(n − k)!
(n − k)¡

hence

1 =
n∑

k=0

h(n, k) =
n∑

k=0

1

k!

(n − k)¡

(n − k)!
.
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Football victory problem

Let D(z) be the generating function for the sequence 〈n¡n!〉.

Since the sequence 〈 1n!〉 has ez as generarting function,

1

1− z
= ez D(z).

Solving for D(z) gives

D(z) =
1

1− z
e−z =

1

1− z

( 1

0!
z0 − 1

1!
z1 +

1

2!
z2 + · · ·

)
.

Equating coefficients of zn both sides, we get

n¡

n!
=

n∑
k=0

(−1)k

k!
.
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Exercises 2.

2. Find the generating function associated with the Fibonacci sequence
〈Fn〉 defined below and find Fn:

F0 = F1 = 1

Fn = Fn−1 + Fn−2 for n ≥ 2.

3. Solve the recurrence relation

T1 = 1

Tn = 2Tn−1 + 1 for n ≥ 2,

using generating function technique.

4. Solve the recurrence relation

L1 = 2

Ln = Ln−1 + n for n ≥ 2.
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Odd and even-indexed terms

There is a method for extracting the even numbered terms
〈g0, 0, g2, 0, g4, 0, . . .〉 of any given sequence.

If we add G (−z) and G (z) we get

G (z) + G (−z) =
∑
n

gn(1 + (−1)n)zn = 2
∑
n

gn [n even ]zn

therefore
G (z) + G (−z)

2
=
∑
n

g2nz
2n.

The odd-numbered terms can be extracted in a similar way,

G (z)− G (−z)

2
=
∑
n

g2n+1z
2n+1.
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Even-indexed Fibonacci numbers

We know that ∑
n

Fnz
n =

z

1− z − z2
.

Hence
z

1− 3z + z2

is the generating function of even-indexed Fibonacci numbers.

That is, the sequence 〈F0,F2,F4,F6, . . .〉 = 〈0, 1, 3, 8, . . .〉, has∑
n

F2nz
n =

z

1− 3z + z2

as the generating function.
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