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Lines in the Plane

Consider the plane R× R.

Problem : What is the maximum number Ln of regions defined by n
lines in the plane?

Here each line extends infinitely in both directions. This problem was first
solved in 1826, by the Swiss mathematician Jacob Steiner.

Jacob Steiner (1796-1863)
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Convexity of a set

Again we start by looking at small cases. The plane with

no lines, has one region,

one line, has two regions,

two parallel lines contribute three regions but two non-parallel lines
contribute four regions.

Definition

A region is convex if it includes all line segments between any two of its
points.

Observations :

The given plane, R× R is convex.

Any region, splitted by any number of straight lines, is convex.

A straight line can split a convex region into at most two new regions,
which are also convex.
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What happens if there are 3 or more lines ?

Case : When there are 3 lines

When we add the third line, it can split at most 3 of the old regions, no
matter how the first two lines are placed. In this case, L3 = 7.

5

4

3
6

7

1

2

Case : When there are n lines

To attain the maximum number of regions, we should have the
following assumptions.

1. no two lines should be parallel, and

2. no three lines should be concurrent.
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What happens if there are n lines ?

Exercise

1. Verify that the following are equivalent :

(a) The nth line (for n ≥ 0) increases the number of regions by k.
(b) The nth line splits k of the old regions.
(c) The nth line hits the previous lines in k − 1 different places.

Since nth line can intersect the “n − 1 old lines” in at most “n − 1”
different points, k is at most n. That is, k ≤ n.

Therefore we have established the upper bound

Ln ≤ Ln−1 + n, for n > 0.

We can achieve equality with the following the assumptions:

nth line is not parallel to any of the others

nth line does not go through any of the existing intersection points.
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Recurrence Relation

The recurrence relation is therefore given by

L0 = 1

Ln = Ln−1 + n, for n > 0.

We should look the solution at small cases :
n 0 1 2 3 4 5

Ln 1 2 4 7 11 16

It looks as if Ln = 1 + Sn, where Sn is the sum of first n positive integers.

We can often understand a recurrence by “unfolding” or “unwinding” it all
the way to the end, as follows:

Ln = Ln−1 + n

= Ln−2 + (n − 1) + n
...

= L0 + 1 + 2 + · · ·+ n
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Triangular Numbers

Thus Ln = 1 + Sn. The values of Sn, (1, 3, 6, 10, 15, . . .) are called the
triangular numbers, because Sn is the number of bowling pins in an
n-row triangular array.

← the usual 4-row array

Adding Sn to its reversal gives that 2Sn = n(n + 1).

Thanks to Gauss who came up with the trick in 1786 when he was nine
years old. Thus

Ln = 1 +
n(n + 1)

2
, for n ≥ 0. (1)
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Closed Form

Exercise

2. Prove (1) by induction.

Non-closed Form Closed Form
T0 = 0 Tn = 2n − 1, n ≥ 0
Tn = 2Tn−1 + 1, n > 0

L0 = 1 Ln = 1 + n(n+1)
2 , n ≥ 0

Ln = Ln−1 + n, n > 0

Sn = 1 + 2 + · · ·+ n, n > 0 Sn = n(n+1)
2 , n > 0

Definition

An expression for a quantity f (n) is in closed form if we can compute it
using at most a fixed number of “well known” standard operations,
independent of n.

P. Sam Johnson Recurrence Relations and Their Solutions (Problem : Steiner’s Regions of Space) 8/16



Closed Form

For example, 2n − 1 and n(n + 1)/2 are closed forms, because they involve
only addition, subtraction, multiplication, division and exponentiation, in
explicit ways.

The total number of simple closed forms is limited.

There are recurrences that don’t have simple closed forms.

The product of first n integers n! has proved to be so important that
we now consider it a basic operation. The formula “n!” is therefore in
closed form, although its equivalent “1 · 2 · · · n” is not.
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A Variant of the “Lines-in-the-Plane” Problem

Suppose that instead of straight lines we use bent lines (∨-shaped lines,
called ∨-lines) each containing one “zig”.

What is the maximum number Zn of regions determined by ‘n’ ∨-lines in
the planes?
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From the above two cases, we realize that ∨-line is like “two straight
lines”:

at intersection (zig point) of a ∨-line, if the lines are extended, we
would get 4 regions,

we lose two regions when there is a ∨-line.
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In order to get the maximum regions, we assume that the intersecting
point of nth ∨-line does not lie on the existing intersection point of other
“n − 1” ∨-lines. There are “n” ∨-lines and we lose only two regions per
line. Thus Zn = L2n − 2n = 2n2 − n + 1, for n ≥ 0.

Exercises

3. For large value of n, can we say that there are four times as many
regions with bent lines as with straight lines?

4. Some of the regions defined by n lines in the plane are infinite, while
others are bounded. What is the maximum possible number of
bounded regions?

5. What is the maximum number of regions definable by n zig-zag lines,
each of which consists of two parallel infinite half-lines joined by a
straight segment?
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Planes in the Space

We consider the problem of determining the maximum number of 3D
regions that can be defined by n planes in space. We denote the
maximum number of 3D regions by Pn. To attain the maximum, we
assume the following :

no two planes should be parallel (because we can inrease the number
of regions by tilting one of the planes),

meets of a plane with two others are never parallel lines (Suppose two
planes are meeting the third plane in two parallel lines. If we move
one of the two planes so that there are two crossing lines in the third
plane, then the number of regions will increase), and

no more than 3 planes meet at a point (Three planes always meet at
a point because the two planes meet at a line, one more plane should
meet the line at a point. But fourth plane should not go through the
common intersection of three existing planes. Otherwise, we can move
the fourth plane little bit, there is an increase in number of regions.)
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The solution at small cases is given below.

n 0 1 2 3

Pn 1 2 4 8

Do the four planes divide the space into 16 parts ?

The (n+ 1)th plane meets each of the existing n planes in a line. Morover,

no two of which are parallel, and

no three of them going to meet.

Now we can look the (n + 1)th plane, which consists n lines. Each line in
the (n + 1)-plane is the intersection of (n + 1)th plane with each of the
existing n planes.

Hence the problem is reduced to a situation of finding maximum number
of regions generated by n-lines, which produces Ln regions.
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Each of the region in the (n + 1)th plane will slice the existing regions
formed from n planes into 2. Each region contributes a new region in
space that was not existing before. Hence

Pn+1 = Pn + Ln.

The above argument can be extended to m-dimensional space. We can
find maximum number of regions generated by m-planes (called
hyperplanes, having dimension m − 1). To get maximum number of
regions, we should avoid parallel planes, lines and multiple intersections.
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Exercises

6. How many pieces of cheese can you obtain from a single thick piece
by making five straight slices? (The cheese must stay in its original
position while you do all the cutting, and each slice must correspond
to a plane in 3D.) Find a recurrence relation for Pn, the maximum
number of three-dimensional regions that can be defined by n
different planes. [Answer : Pn = n3+5n+6

6 ]

7. Show that the following set of n bent lines defines Zn regions, where
Zn is defined by

Zn = 2n2 − n + 1, for n ≥ 0.

The jth bent line, for 1 ≤ j ≤ n, has its zig at (n2j , 0) and goes up
through the points (n2j − nj , 1) and (n2j − nj − n−n, 1).

8. Is it possible to obtain Zn regions with n bent lines when the angle at
each zig is 30◦?
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