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The Josephus Problem : History

The problem is named after Flavius Josephus, a Jewish historian living in
the 1st century. During Jewish-Roman war, Josephus and his 40 soldiers
were trapped in a cave, the exit of which was blocked by Romans. They
chose suicide over capture and decided that they would form a circle and
start killing every third remaining person until two were left. But
Josephus quickly calculated where he and his friend should stand in the
circle, and finally, both of them escaped from execution.

A Roman portrait bust said to be of Josephus

(37AD-100AD)
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Josephus Problem

There were 41 prisoners and every 3rd prisoner was being killed. Among
them was a clever chap name Josephus who worked out the problem,
stood at the surviving position, and lived on to tell the tale. Which
number was he?

Josephus had a friend. The problem is to find the places of the two last
remaining survivors. Where were they standing?

Josephus Problem (Generalized Case)

There are n people standing in a circle waiting to be executed. The
counting out begins at some point in the circle and proceeds around the
circle in a fixed direction. In each step, k − 1 persons are skipped and the
kth person is executed. The elimination proceeds around the circle (which
is becoming smaller and smaller as the executed people are removed), until
only k − 1 persons remain, who are given freedom.
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Josephus Problem (Simple Case k = 2)

The problem is restated simply for k = 2 : there are n people standing in a
circle, of which you are one. Someone outside the circle goes around
clockwise and repeatedly eliminates every other person in the circle, until
one person (the winner) remains. Where should you stand so you become
the winner?
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If n = 10, then the elimination order is 2, 4, 6, 8, 10, 3, 7, 1, 9, so the winner
(survivor’s number) is 5.
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Therefore, the survivor’s number is 5 in a group of 10 people, it is denoted
by J(10) = 5.

We look the solution at small cases.

n 1 2 3 4 5 6

J(n) 1 1 3 1 3 5

The objective is to find the survivor’s number, J(n), for a given positive
integer n.

Can J(n) be an even number ?

No. Because the first trip around the circle eliminates all the even
numbers. Hence J(n) must be an odd number. Note that we always
assume that the entire process is started with the number 1.
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What about the even case?

Suppose there are 2n people (even number).

After the first go-round we are left with only “n” odd numbers and 3 will
be the next to go.
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Beginning Stage After First Round Numbers Relabeled

P. Sam Johnson Recurrence Relations and Their Solutions (Josephus Problem) 6/29



This is just like starting out with n people, except that each person’s
number has been doubled and decreased by 1.

That is, J(2n) = 2 J(n)− 1, for n ≥ 1. Since J(5) = 3,

J(10) = 2 J(5)− 1 = (2× 3)− 1 = 5.

Exercises

1. Find J(20), J(40), J(80). In general, find J(2m · 5), for any positive
integer m.

2. For any positive integer m, find J(2m). (OR) Can we say that the
first person will survive whenever n is a power of 2?

3. Find the survivor’s numbers of all even numbers upto 16.
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What about the odd case?

With 2n + 1 people, it turns out that person number 1 is wiped out just
after person number 2n, and we are left with 3, 5, 7, . . . , 2n + 1.

Again we almost have the original situation with n people, but this time
their numbers are doubled and increased by 1. Thus

J(2n + 1) = 2 J(n) + 1, for n ≥ 1.

Combining these equations with J(1) = 1 gives us a recurrence that
defined J in all cases:

J(1) = 1

J(2n) = 2J(n)− 1, for n ≥ 1 (1)

J(2n + 1) = 2J(n) + 1, for n ≥ 1.

Exercise

4. Find the survivor’s numbers of all odd numbers upto 15.
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What is a closed form of (1)?

Exercise

5. Using the recurrence relation (1), find J(42), J(39) and J(61).

The above exercise will tell us that starting with any positive integer n, we
can reach either J(1) or J(2) from the recurrence relation (1).

We may be able to spot a pattern and guess the recurrence solution if we
write down J(n) for small values on n.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J(n) 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1

We can group the values of J(n) by powers of 2.

In the table, the groups are separated by ‖-lines.

J(n) is always 1 at the beginning of a group.

J(n) increases by 2 within a group.
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Exercise

6. Prove that any positive integer n can be written in the form
n = 2m + ` where 2m is the largest power of 2 not exceeding n and
where ` is remainder, 0 ≤ ` ≤ 2m − 1.

From the table, we guess that the solution J(n) to (1) seems to be

J(2m + `) = 2`+ 1 (2)

where 2m is the largest power of 2 not exceeding n and where ` is
remainder, 0 ≤ ` ≤ 2m − 1.

Argument : Let n = 2m + `, where 0 ≤ ` < 2m. We eliminate ` persons
numbered 2, 4, . . . , 2`. We are left with 2m persons. At this point,
(2`+ 1) is the first person and he is the luck surviour.

Exercises

7. Using induction, prove (2). Also find J(102).
Note that the induction is on m.

8. Find r such that (121)r = (144)8 where r and 8 are the bases.
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From the table and the recurrence solution (2), we observe that powers of
2 play an important role in our finding the solution. Hence we look at the
base (radix) 2 representations of n and J(n).

Suppose n’s binary expansion is

n = (bmbm−1 · · · b1b0)2.

That is, n = bm2m + bm−12m−1 + · · ·+ b12 + b0,

where each bi is either 0 or 1 where the leading bit bm is 1.

Suppose n = 2m + `, with the remainder ` satisfying 0 ≤ ` ≤ 2m − 1. Then

2m = (1 0 · · · 0 0)2

` = (0bm−1bm−2 · · · b1b0)2

2` = (bm−1bm−2 · · · b1b00)2

2`+ 1 = (bm−1bm−2 · · · b1b01)2

n = (1bm−1bm−2 · · · b1b0)2.
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From (2), we get

J
(

(1bm−1bm−2 · · · b1b0)2
)

= (bm−1bm−2 · · · b1b01)2.

In the language (slang / lingo) of computer programming, we get J(n)
from n by doing a one bit cyclic left-shift.

Exercises

9. Find J(343) by using binary notation. Analyse the case when
bm−1 = 0.

10. Is the following statement correct?
If we start with n and iterate the J function m + 1 times

(
applying J

repeatedly with itself, we get J(n), J2(n), J3(n), . . . , Jm+1(n)
)
, then

we end up with n again. Note that each n is an (m + 1)-bit number
and we are doing m + 1 one-bit cyclic left-shifts.
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Some Observations

Since J(n) is the survivor’s number, J(n) has to be “≤ n”.

If J(n) < n, then we can never get back up to n by continuing to
iterate.

Repeated application of J produces a sequence of decreasing values.

When we do one-bit cyclic left shift, the “0” disappears when it
becomes the leading bit, and the process can be continued.

Exercise

11. Prove that for a given integer n, the following are equivalent:

(a) J(n) = n (thus, n = J(n) = J2(n) = · · · ).
(b) All bits of n are 1.
(c) n = 2m+1 − 1, where n = 2m + `, 0 ≤ ` ≤ 2m − 1.
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Question-Answer

Question: Is there a positive integer n0, for a given positive integer n such
that

n ≥ J(n) ≥ J2(n) ≥ · · · ≥ n0 = J(n0) = J2(n0) = · · · ?

(OR) Does repeated application of J (to a given positive integer n)
produce a sequence of numbers that eventually reach a “fixed point”, say
n0?

If this is the case, how to find the fixed point?

Applying the function J repeatedly to the given positive integer n will
produce a pattern of all 1‘s (all bits are 1, no zeros in between).

Suppose t is the number of 1 bits in the binary representation of n. Then
the corresponding number, denoted by v(n) is

v(n) = 1.2t−1 + 1.2t−2 + · · ·+ 1.2 + 1 = 2t − 1.

Thus 2t − 1 is a fixed point of J.

For example, n = 13 has the binary representation (1101)2. Here t = 3.
P. Sam Johnson Recurrence Relations and Their Solutions (Josephus Problem) 14/29



Question-Answer

Question: Which powers of J has 23 − 1 = 7 as a fixed point when we
start with the number 13 ?

Answer: Jq, where q is the number of 1-bits (of the given number 7)
appearing before the last 0-bit. Here q is any integer, greater than or
equal to 2. That is, J2(13) = J3(13) = J4(13) = · · · = 23 − 1 = 7.

Exercises

12. Find the smallest positive integer q such that
Jq((101101101101011)2) = n0 for some n0 (called fixed point of Jq).

13. Say true or false: J(2n + 1)− J(2n) = 2 for any positive integer n.

14. For what values of n, is J(n) = n/2 true? Of course, here n is even.

15. For what values of m, is 2m − 2 a multiple of 3?

16. Write down the binary representation of n satisfying “J(n) = n/2”
and conclude that cyclic-left-shifting (that is, J(n)) and one-place
ordinary shifting (that is, halving n) are same.
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Closed Form for General Recurrence Relation

We now discuss to find a closed form for the more general recurrence
relation:

f (1) = α

f (2n) = 2f (n) + β, for n ≥ 1 (3)

f (2n + 1) = 2f (n) + γ, for n ≥ 1.

We have the following table for the small values of n.

Josephus Problem

n f (n)
α = 1, β = −1, γ = 1
Calculation J(n)

1 α 1 1

2 2α + β 2− 1 1
3 2α + γ 2 + 1 3
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Josephus Problem

n f (n)
α = 1, β = −1, γ = 1
Calculation J(n)

4 4α + 3β 4− 3 1
5 4α + 2β + γ 4− 2 + 1 3
6 4α + β + 2γ 4− 1 + 2 5
7 4α + 3γ 4 + 3 7

8 8α + 7β 8− 7 1
9 8α + 6β + γ 8− 6 + 1 3
10 8α + 5β + 2γ 8− 5 + 2 5
...

...
...

...
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From the table, we have the following observations:

α’s coefficient is n’s largest power of 2 (say, 2m)

between powers of 2 (say, 2m and 2m+1)

β’s coefficient decreases by 1 (from 2m − 1 to 1 and finally 0)
γ’s coefficient increases by 1 (initially 0 and increases from 1 to
2m − 1).

If we express the recurrence solution in the form

f (n) = A(n)α + B(n)β + C (n)γ,

then from the observations, we have

A(n) = 2m

B(n) = 2m − 1− `
C (n) = `.

Here, as usual, n = 2m + ` and 0 ≤ ` < 2m, for n ≥ 1.
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Recurrence Relation and Its Solution

Recurrence Relation

f (1) = α = 1

f (2n) = 2f (n) + β, for n ≥ 1 (4)

f (2n + 1) = 2f (n) + γ, for n ≥ 1.

Recurrence Solution

f (n) = A(n)α + B(n)β + C (n)γ (5)

where

A(n) = 2m

B(n) = 2m − 1− `
C (n) = `.

Here, as usual, n = 2m + ` and 0 ≤ ` < 2m, for n ≥ 1.
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Exercise

17. Prove that the functions A(n),B(n) and C (n) of (5) which solve (4).

Suppose α = 1, β = 0 = γ. The solution to the recurrence relation

f (1) = α

f (2n) = 2f (n), for n ≥ 1

f (2n + 1) = 2f (n), for n ≥ 1,

is f (n) = 2m, where n = 2m + `, 0 ≤ ` < 2m, for n ≥ 1.

Exercise

18. By induction on m, prove that f (2m + `) = 2m.

If we are given a solution f (n), are there any constants (α, β, γ), that will
define f (n)? Let us solve the following exercise.

Exercise

19. Find the values of parameters (α, β, γ), that will define f (n) = n.
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Repertoire Method

The repertoire method is really a tool to help with the intuitive step of
figuring out a closed form for a recurrence relation. It does so by breaking
the original problem into smaller parts, with the hope they might be easier
to solve.

We consider the generalized Josephus recurrence relation

f (1) = α

f (2n) = 2f (n) + β, for n ≥ 1 (6)

f (2n + 1) = 2f (n) + γ, for n ≥ 1.

The idea of the repertoire method is to assume that there exists a
solution of type

f (n) = A(n)α + B(n)β + C (n)γ

where A(n),B(n), and C (n) are to be found.
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Choosing particular values and combining them will give a solution.

We consider α = 1, β = γ = 0. Then the recursion (6) becomes

A(1) = 1

A(2n) = 2A(n), for n ≥ 1

A(2n + 1) = 2A(n), for n ≥ 1.

Hence A(2m + `) = 2m. By starting with a simple function, f (n) and
seeing if there are any constants (α, β, γ) that will define it.

Plugging the constant function f (n) = 1 into (6), we get
α = 1, β = −1 = γ (after solving them). Hence

A(n)− B(n)− C (n) = 1.

Similiarly, we can plug in f (n) = n, we get α = 1, β = 0, γ = 1. Hence

A(n) + C (n) = n.
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The functions A(n),B(n), and C (n) of f (n) = A(n)α + B(n)β + C (n)γ in
general, satisfy the equations

A(n) = 2m, where n = 2m + `

A(2n) = 2A(n), for n ≥ 1

A(2n + 1) = 2A(n), for n ≥ 1.

Exercises

20. Use the repertoire method to solve the general four-parameter
recurrence

g(1) = α

g(2n + j) = 3g(n) + γn + β, for j = 0, 1, and n ≥ 1.

21. Use the repertoire method to solve the general five-parameter
recurrence

h(1) = α

h(2n + j) = 4g(n) + γjn + βj , for j = 0, 1, and n ≥ 1.
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Generalized Josephus Recurrence Relation

We consider the generalized Josephus recurrence relation

f (1) = α

f (2n + j) = 2f (n) + βj , for j = 0, 1 and n ≥ 1.

Powers of 2 will play an important role in finding the solution, so we use
the binary representations of n and f (n).

f ((bmbm−1bm−2 · · · b1b0)2) = 2f ((bmbm−1bm−2 · · · b1)2) + βb0
= 4f ((bmbm−1bm−2 · · · b2)2) + 2βb1 + βb0

...
...

...

= 2mf ((bm)2) + 2βbm−1 + · · ·+ 2βb1 + βb0
= 2mα + 2βbm−1 + · · ·+ 2βb1 + βb0
= (αβbm−1 · · ·βb1βb0)2
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Exercise

22. For the original Josephus values α = 1, β = −1 and γ = 1, find
J(100). [ Hint : β0 = β = −1 and β1 = γ = 1.]

Consider the recurrence relation

f (1) = α1

f (2) = α2

f (3n) = 7f (n) + β1

f (3n + 1) = 7f (n) + β2

f (3n + 2) = 7f (n) + β3, for n ≥ 1.

Powers of 3 play a role in our finding the solution : Start with the number
“n” in base 3, and produce values J3(n) in base 7.

It has the following radix-changing solution :

f ((bmbm−1bm−2 · · · b1b0)3) = (αβbm−1 · · ·βb1βb0)7.
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Consider the k-generalized Josephus problem

f (j) = αj , 1 ≤ j ≤ k − 1

f (kn + j) = cf (n) + βj , 0 ≤ j ≤ k − 1 and n ≥ 1.

Powers of 3 play a role in our finding the solution : Start with the number
“n” in base k , and produce values Jk(n) in base c .

It has the following radix-changing solution :

f ((bmbm−1bm−2 · · · b1b0)k) = (αβbm−1 · · ·βb1βb0)c .

Exercise

23. Compute f (19) from the recurrence, with initial conditions
f (1) = 34, f (2) = 5,

f (3n) = 10f (n) + 76 for n ≥ 1

f (3n + 1) = 10f (n)− 2 for n ≥ 1

f (3n + 2) = 10f (n) + 8, for n ≥ 1.
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Exercises

24. Josephus had a friend who was saved by getting into the next-to-last
position. What is I (n), the number of the penultimate survivor when
every second person is executed?

25. Suppose there are 2n people in a circle; the first n are “good guys”
and the last n are “bad guys!” Show that there is always an integer
m (depending on n) such that, if we go around the circle executing
every mth person, all the bad guys are first to go. (For example,
when n = 3 we can take m = 5; when n = 4 we can take m = 30.)

26. Suppose that Josephus finds himself in a given position j , but he has
a chance to name the elimination parameter q such that every qth
person is executed. Can he always save himself?
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Exercise

27. Generalizing the above exercise, let’s say that a Josephus subset of
{1, 2, . . . , n} is a set of k numbers such that, for some q, the people
with the other n − k numbers will be eliminated first. (These are the
k positions of the “good guys” Josephus wants to save.) It turns out
that when n = 9, three of the 29 possible subsets are non-Josephus,
namely {1, 2, 5, 8, 9}, {2, 3, 4, 5, 8}, and {2, 5, 6, 7, 8}. There are 13
non-Josephus sets when n = 12, none for any other values of n ≤ 12.
Are non-Josephus subsets rare for large n?
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