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Overview

We discuss integration in vector fields in the lecture.

You must be knowing the definite integral of a function over a finite closed
interval [a, b] on the x-axis.

Definite integrals are used to find the mass of a thin straight rod, or the
work done by a variable force directed along the x-axis.

Bucket and Rope Leaky Bucket

P. Sam Johnson Line Integrals 2/58



Work Done by a Variable Force along the x-axis

A leaky 5 N bucket is lifted from the ground into the air by pulling in 20
meter of rope at a constant speed. The rope weighs 0.08 N/m. The
bucket starts with 16 N of water and leaks at a constant rate. It finishes
draining just as it reaches the top. How much work was done ?

lifting the water alone ;

lifting the water and bucket together ;

lifting the water, bucket and rope?
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Line Integrals

Now we would like to calculate the masses of thin rods or wires lying along
a curve in the plane or space, or to find the work done by a variable force
acting along such a curve.

For these calculations we need a more general notion of a “line” integral
than integrating over a line segment on the x-axis.

Instead we need to integrate over a curve C in the plane or in space.
These more general integrals are called line integrals, although “curve”
(or “path”) integrals might be more descriptive.

We make our definitions for space curves, remembering that curves in the
xy -plane are just a special case with z-coordinate identically zero.
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Vector Functions

When a particle moves through space during a time interval I , we think of
the particle’s coordinates as functions defined on I :

x = f (t), y = g(t), z = h(t), t ∈ I .

The points
(x , y , z) = (f (t), g(t), h(t)), t ∈ I

made up the curve in space that we call the particle’s path.

The equations and interval in the above equations parameterize the
curve.
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Space Curves
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Vector Functions

A curve in space can also be represented in vector form. The vector

r(t) = OP = f (t)i + g(t)j + h(t)k

is the particle’s position vector.

r(t) denotes the vector from the origin to the particle’s position
P(f (t), g(t), h(t)) at time t.
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Vector Functions

The following figures display several space curves.
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Vector Functions

The functions f , g , and h are the component functions (components)
of the position vector. We think of the particle’s path as the curve traced
by r during the time interval I .

The above definition defines r as a vector function of the real variable t on
the interval I . More generally, a vector function or vector-valued
function on a domain set D is a rule that assigns a vector in space to
each element in D.

For now, the domains will be intervals of real numbers resulting in a
space curve.
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Vector Functions

Later, we see, the domains will be regions in the plane. Vector
functions will then represent surfaces in space.

Vector functions on a domain in the plane or space also give rise to
“vector fields,” which are important to the study of the flow of a fluid,
gravitational fields, and electromagnetic phenomena.
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Vector Functions

We refer to real-valued functions as scalar functions to distinguish them
from vector functions. The components of r are scalar functions of t.
When we define a vector-valued function by giving its component
functions, we assume that vector function’s domain to be the
common domain of the components.

The following graph shows a helix by the vector function

r(t) = (cos t)i + (sin t)j + tk .
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Other Helices
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Limits and Continuity

The way we define the limits of vector-valued functions is similar to the
way we define limits of real-valued functions.

Definition 1.

Let r(t) = f (t)i + g(t)j + h(t)k be a vector function and L a vector. We
say that r has limit L as t approaches t0 and write

lim
t→t0

r(t) = L

if, for every number ε > 0, there exists a corresponding number δ > 0 such
that for all t

0 < |t − t0| < δ ⇒ |r(t)− L| < ε.
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Limits and Continuity

If L = L1i + L2j + L3k , then limt→t0 r(t) = L precisely when

lim
t→t0

f (t) = L1, lim
t→t0

g(t) = L2, lim
t→t0

h(t) = L3.

The equation

lim
t→t0

r(t) =
(

lim
t→t0

f (t)
)
i +

(
lim
t→t0

g(t)
)
j +

(
lim
t→t0

h(t)
)
k

provides a practical way to calculate limits of vector functions.
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Limits and Continuity

We define continuity for vector functions the same way we define
continuity for scalar functions.

Definition 2.

A vector function r(t) is continuous at a point t = t0 in its domain if
limt→t0 r(t) = r(t0). The function is continuous if it is continuous at
every point in its domain.

Hence r(t) is continuous at t = t0 if and only if each component function
is continuous there.

Example 3.

The function g(t) = (cos t)i + (sin t)j + btck is discontinuous at every
integer, where the greatest integer function btc is discontinuous.
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Derivatives and Motion

Suppose that
r(t) = f (t)i + g(t)j + h(t)k

is the position vector of a particle moving along a curve in space and that
f , g , and h are differentiable functions of t. Then the difference between
the particle’s positions at time t and time t + ∆t is

∆r = r(t + ∆t)− r(t).

In terms of components,

∆r = [f (t + ∆t)− f (t)]i + [g(t + ∆t)− g(t)]j + [h(t + ∆t)− h(t)]k .
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Derivatives and Motion

As ∆t approaches zero, three things seem to
happen simultaneously.
First, Q approaches P along the curve.
Second, the secant line PQ seems to ap-
proach a limiting position tangent to the
curve at P.
Third, the quotient ∆r/∆t approaches the
limit

lim
∆t→0

∆r/∆t =
[df
dt

]
i +

[dg
dt

]
j +

[dh
dt

]
k .
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Derivatives and Motion

Definition 4.

The vector function

r(t) = f (t)i + g(t)j + h(t)k

has a derivative at t if f , g , and h have derivatives at t.
The derivative is the vector function

r ′(t) =
dr
dt

= lim
∆t→0

r(t + ∆t)− r(t)

∆t
=
[df
dt

]
i +

[dg
dt

]
j +

[dh
dt

]
k .

A vector function r is differentiable if it is differentiable at every point of
its domain. The curve traced by r is smooth if dr/dt is continuous and
never 0, that is, if f , g , and h have continuous first derivatives that are not
simultaneously 0.
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Derivatives and Motion

The geometric significance of the definition of
derivative is shown in the figure. The points
P and Q have position vectors r(t) and r(t+
∆t)− r(t), and the vector PQ is represented
by

r(t + ∆t)− r(t).

For ∆t > 0, the scalar multiple

(1/∆t)(r(t + ∆t)− r(t))

points in the same direction as the vector PQ.
As ∆t → 0, this vector approaches a vector
defined to be the vector tangent to the curve
at P.
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Derivatives and Motion

The tangent line to the curve at a point

(f (t0), g(t0), h(t0))

is defined to be the line through the point parallel to r ′(t0). We require
dr/dt 6= 0 for a smooth curve to make sure the curve has a continuously
turning tangent at each point.

On a smooth curve, there are no sharp corners or cusps.

A curve that is made up of a funite number of
smooth curves pieced togther in a continuous
fashion is called piecewise smooth.
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Derivatives and Motion

For ∆t positive, ∆r points forward, in the direc-
tion of the motion. The vector ∆r/∆t, having
the same direction as ∆r points forward too.
Had ∆t been negative, ∆r would have pointed
backward, against the direction of the motion.
The quotient vector ∆r/∆t, however, being a
negative scalar multiple of ∆r would once again
have pointed forward.
Now matter how ∆r points, ∆r/∆t points
forward and we expect the vector dr/dt =
lim∆r→0 ∆r/∆t, when different from 0, to do the
same.
This means that the derivative dr/dt is just what
we want for modeling a particle’s velocity.
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Derivatives and Motion

It points in the direction of motion and gives the rate of change of
position with respect to time. For a smooth curve, the velocity is never
zero; the particle does not stop or reverse direction.

Definition 5.

If r is the position vector of a particle moving along a smooth curve in
space, then

v(t) =
dr
dt

is the particle’s velocity vector, tangent to the curve.
At any time t, the direction of v is the direction of motion, the magnitute
of v is the particle’s speed, and the derivative a = dv/dt, when it exists,
is the particle’s acceleration vector.
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Derivatives and Motion

1. Velocity is the derivative of position : v = dr
dt .

2. Speed is the magnitute of velocity : Speed = |v |.
3. Acceleration is the derivative of velocity : a = dv

dt = d2r
dt2 .

4. The unit vector v/|v | is the direction of motion at time t.

5. We can express the velocity of a moving particle as the product of its
speed and direction :

Velocity = |v |
( v
|v |

)
= (speed)(direction).

Because the derivatives of vector functions may be computed component
by component, the rules for differentiating vector functions have the same
form as the rules for differentiating scalar functions.
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Differentiation Rules for Vector Functions

Let u and v be differentiable vector functions of t, C a constant vector, c
any scalar, and f any differentiable scalar function.

1. Constant Function Rule : d
dtC = 0

2. Scalar Multiple Rules : d
dt [cu(t)] = cu ′(t)

d

dt
[f (t)u(t)] = f ′(t)u(t) + f (t)u ′(t)

3. Sum Rule : d
dt [u(t) + v(t)] = u ′(t) + v ′(t)

4. Difference Rule : d
dt [u(t)− v(t)] = u ′(t)− v ′(t)

5. Dot Product Rule : d
dt [u(t).v(t)] = u ′(t).v(t) + u(t).v ′(t)

6. Cross Product Rule : d
dt [u(t)× v(t)] = u ′(t)× v(t) + u(t)× v ′(t)

7. Chain Rule : d
dt [u(f (t))] = f ′(t)u ′(f (t)).
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Vector Functions of Constant Length

When we track a particle moving on a sphere centered at the origin, the
position vector has a constant length equal to the radius of the sphere.
The velocity vector dr/dt, tangent to the path of motion, is tangent to
the sphere and hence perpendicular to r .

This is always the case for a differentiable vector function of constant
length: The vector and its first derivative are orthogonal.

With the length constant, the change in the function is a change in
direction only, and direction changes take place at right angles. We can
also obtain this result by direct calculation : r(t).r(t) = c2 gives, after
differentiating both sides, 2r ′(t).r(t) = 0.
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Vector Functions of Constant Length

If r is a differentiable vector function of t of constant length, then the
vectors r ′(t) and r(t) are orthogonal because their dot product is zero.
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Integrals of Vector Functions

A differentiable vector function R(t) is an antiderivative of a vector
function r(t) on an interval I if dR/dt = r at each point of I . If R is an
antiderivative of r on I , it can be shown, working one component at a
time, that every antiderivative of r on I has the form R + C for some
constant vector C .

The set of all antiderivatives of r on I is the indefinite integral of r on I .

The indefinite integral of r with respect to t is the set of all

antiderivatives of r , denoted by

∫
r(t) dt. If R is any antiderivative of r ,

then ∫
r(t) dt = R(t) + C .
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Integrals of Vector Functions

Definite integrals of vector functions are best defined in terms of
components.

If the components of r(t) = f (t)i + g(t)j + h(t)k are integrable over
[a, b], then so is r , and the definite integral of r from a to b is

b∫
a

r(t) dt =
( b∫

a

f (t) dt
)
i +

( b∫
a

g(t) dt
)
j +

( b∫
a

h(t) dt
)
k .

P. Sam Johnson Line Integrals 28/58



Arc Length Along a Space Curve

One of the features of smooth space curves is that they have a measurable
length. This enables us to locate points along these curves by giving their
directed distance s along the curve from some base point, the way we
locate points on coordinate axes by giving their directed distance from the
origin.

Time is the natural parameter for describing a moving body’s velocity and
acceleration, but s is the natural parameter for studying a curve’s shape.
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Arc Length Along a Space Curve

To measure distance along a smooth curve in space, we add a z-term to
the formula we use for curves in the plane.

The length of a smooth curve r(t) = x(t)i + y(t)j + z(t)k , a ≤ t ≤ b,
this is traced exactly once as t increases from t = a to t = b, is

L =

b∫
a

√(dx
dt

)2
+
(dy
dt

)2
+
(dz
dt

)2
dt.

The square root in the above equation is |v |, the length of a velocity vector
dr/dt. This enables us to write the formula for length a shorter way.

Arc Length Formula :

L =

b∫
a

|v | dt.
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Arc Length Along a Space Curve

If we choose a base point P(t0) on a smooth curve C parameterized by t,
each value of t determines a point P(t) = (x(t), y(t), z(t)) on C and a
“directed distance”

s(t) =

t∫
t0

|v(τ)| dτ,

measured along C from the base point.
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Arc Length Along a Space Curve

If t > t0, s(t) is the distance from P(t0) to P(t). If t < t0, s(t) is the
negative of the distance. Each value of s determines a point on C and this
parameterizes C with respect to s. We call s an arc length parameter for
the curve. The parameter’s value increases in the direction of increasing t.
The arc length parameter is particularly effective for investigating
the turning and twisting nature of a space curve.

Since the curve is smooth, the Fundamental Theorem of Calculus tells us
that s is a differentiable function of t with derivative ds

dt = |v(t)|.

The unit tangent vector of a smooth vector r(t) is

T =
dr
ds

=
dr/dt
ds/dt

=
v
|v |
.
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Line Integrals

Suppose that f (x , y , z) is a real-valued function we wish to integrate over
the curve r(t) = g(t)i + h(t)j + k(t)k , a ≤ t ≤ b, lying within the
domain of f . The values of f along the curve are given by the composite
function f (g(t), h(t), k(t)). We are going to integrate this composite with
respect to arc length from t = a to t = b. To begin, we first partition the
curve into a finite number n of subarcs.
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Line Integrals

The typical subarc has length ∆sk . In each subarc we choose a point
(xk , yk , zk) and form the sum

Sn =
n∑

k=1

f (xk , yk , zk)∆sk . (1)

If f is continuous and the functions g , h, and k have continuous first
derivatives, then these sums approach a limit as n increases and the
lengths ∆sk approach zero. We call this limit the line integral of f over
the curve from a to b. If the curve is denoted by a single letter, C for
example, the notation for the integral is∫

C

f (x , y , z) ds “The integral of f over C“.
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Line Integrals

If v = dr/dt is continuous and never 0, then the curve represented by r(t)
for a ≤ t ≤ b, is called smooth.

On a smooth curve, there are no sharp corners or cusps.

A curve that is made up of a funite number of
smooth curves pieced togther in a continuous
fashion is called piecewise smooth.
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Line Integrals

If r(t) is smooth for a ≤ t ≤ b and the function f is continuous on C ,
then the limit in Equation 1 can be shown to exist. We can then apply the
Fundamental Theorem of Calculus to differentiate the arc length equation,

s(t) =

t∫
a

|v(τ)| dτ

to express ds in Equation 1 as ds = |v(t)| dt.

A theorem from advanced calculus says that we can then evaluate the
integral of f over C as

∫
C

f (x , y , z) ds =

b∫
a

f (g(t), h(t), k(t))|v(t)| dt.
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Line Integrals : The Length of Curve

Notice that the integral on the right side of the last equation is just an
ordinary (single) definite integral, where we are integrating with respect to
the parameter t.

The formula evaluates the line integral on the left side correctly no matter
what parameterization is used, as long as the parameterization is smooth.

Note that the parameter t defines a direction along the path. The starting
point on C is the position r(a) and movement along the path is in the
direction of increasing t.
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Additivity

Line integrals have the useful property that if a curve C is made by joining
a finite number of curves C1,C2, . . . ,Cn end to end, then the integral of a
function over C is the sum of the integrals over the curves that make it up:∫

C

f ds =

∫
C1

f ds +

∫
C2

f ds + · · ·+
∫
Cn

f ds.

If f has the constant value 1, then the integral of f over C gives the
length of C from t = a to t = b.
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How to Evaluate a Line Integral ?

To integrate a continuous function f (x , y , z) over a curve C :

Find a smooth parametrization of C ,

r(t) = g(t)i + h(t)j + k(t)k , a ≤ t ≤ b.

Evaluate the integral as

∫
C

f (x , y , z) ds =

b∫
a

f (g(t), h(t), k(t)) |v(t)| dt.
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Mass

We treat coil springs and wires like masses distributed along smooth
curves in space. The distribution is described by a continuous density
function δ(x , y , z) (mass per unit length).

The spring’s or wire’s mass is calculated with the following formula, which
is applicable to thin rods.

Let δ(x , y , z) be the density at (x , y , z) mass per unit area.

Mass :

M =

∫
C

δ(x , y , z) ds.
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Moment Formulas for Coil Springs, Wires, and Thin Rods
lying along a smooth curve C in space

First moments above the coordinate planes :

Myz =

∫
C
x δ ds, Mxz =

∫
C
y δ ds, Mxy =

∫
C
z δ ds.

Coordinates of the center of mass :

x = Myz/M, y = Mxz/M, z = Mxy/M.
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Line Integrals in the Plane

There is an interesting geometric interpretation for line integrals in the
plane. If C is a smooth curve in the xy -plane parametrized by

r(t) = x(t)i + y(t)j, a ≤ t ≤ b,

we generate a cylindrical surface by moving a straight line along C
orthogonal to the plane, holding the line parallel to the z-axis.

If z = f (x , y) is a nonnegative continuous function over a region in the
plane containing the curve C , then the graph of f is a surface that lies
above the plane.

The cylinder cuts through this surface, forming a curve on it that lies
above the curve C and follows its winding nature. The part of the
cylindrical surface that lies beneath the surface curve and above the
xy -plane is like a “winding wall” or “fence” standing on the curve C and
orthogonal to the plane.
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Line Integrals in the Plane

At any point (x , y) along the curve, the height of the wall is f (x , y).

Figure shows that that the “top” of the wall is the curve lying on the
surface z = f (x , y).

The line integral
∫
C f ds gives the area of the portion of the cylindrical

surface or “wall” beneath z = f (x , y) ≥ 0.

The line integral
∫
c f ds is the area of the wall shown in the figure.
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Exercises

Exercise 6.

Write vector equations for the following graphs.

(a)

(b)

(c)

(d)
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Solution for Exercise 6

(a) r = tj + (2− 2t)k

(b) r = ti + tj + tk

(c) r = i + j + tk

(d) r = (2 cos t)i + (2 sin t)j
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Exercises

Exercise 7.

1. Find the line integral of f (x , y , z) = x + y + z over the straight-line
segment from (1, 2, 3) to (0,−1, 1).

2. Integrate f (x , y , z) = −
√
x2 + z2 over the circle

r(t) = (a cos t)j + (a sin t)k, 0 ≤ t ≤ 2π.

3. Integrate f (x , y) = x2 − y over the curve C : x2 + y2 = 4 in the first
quadrant from (0, 2) to (

√
2,
√

2).

4. Find the mass of a wire that lies along the curve

r(t) = (t2 − 1)j + 2tk, 0 ≤ t ≤ 1

if the density is δ = (3/2)t.

P. Sam Johnson Line Integrals 46/58



Solution for Exercise 7

1. r(t) = (i + 2j + 3k) + t(−i− 3j− 2k) = (1− t)i + (2− 3t)j + (3− 2t)k, 0 ≤ t ≤ 1⇒ dr
dt

=

−i− 3j− 2k⇒ | dr
dt
| =
√

1 + 9 + 4 =
√

14; x + y + z = (1− t) + (2− 3t) + (3− 2t) =

6− 6t ⇒
∫
c f (x , y , z)ds =

∫ 1
0 (6− 6t)

√
14dt = 6

√
14
[
t − t2

2

]1
0

= (6
√

14)( 1
2

) = 3
√

14

2. r(t) = (a cos t)j + (a sin t)k, 0 ≤ t ≤ 2π ⇒ dr
dt

= (−a sin t)j + (a cos t)k⇒ | dr
dt
| =√

a2 sin2 t + a2 cos2 t = |a|;−
√
x2 + z2 = −

√
0 + a2 sin2 t ={

−|a| sin t, 0 ≤ t ≤ π
|a| sin t, π ≤ t ≤ 2π

⇒
∫
c f (x , y , z)ds =

∫ π
0 −|a|

2 sin t dt +
∫ 2π
π |a|

2 sin t dt =

[a2 cos t]π0 − [a2 cos t]2π
π = [a2(−1)− a2]− [a2 − a2(−1)] = −4a2

3. r(t) = (2 sin t)i + (2 cos t)j, 0 ≤ t ≤ π
4
⇒ dr

dt
= (2 cos t)i + (−2 sin t)j⇒ | dr

dt
| =

2; f (x , y) = f (2 sin t, 2 cos t) = 4 sin2 t − 2 cos t ⇒
∫
c f ds =∫ π/4

0 (4 sin2 t − 2 cos t)(2)dt = [4t − 2 sin 2t − 4 sin t]
π/4
0 = π − 2(1 +

√
2)

4. r(t) = (t2−1)j+2tk, 0 ≤ t ≤ 1⇒ dr
dt

= 2tj+2k⇒ | dr
dt
| = 2

√
t2 + 1;M =

∫
c δ(x , y , z)ds =∫ 1

0 δ(t)(2
√
t2 + 1)dt =

∫ 1
0 ( 3

2
t)(2
√
t2 + 1)dt =

[
(t2 + 1)3/2

]1
0

= 23/2 − 1 = 2
√

2− 1
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Exercises

Exercise 8.

Integrate f (x , y , z) = x +
√
y − z2 over the path from (0, 0, 0) to (1, 1, 1)

given by
C1 : r(t) = t i + t2j, 0 ≤ t ≤ 1.

C2 : r(t) = i + j + tk, 0 ≤ t ≤ 1.

How about integrating f from (0, 0, 0) to (1, 1, 1) by a straight line?
Note that the value of the line integral along a path joining two points can
change if we change the path between them.
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Solution for Exercise 8

C1 : r(t) = ti + t2j, 0 ≤ t ≤ 1⇒ dr
dt = i + 2tj⇒ |drdt | =

√
1 + 4t2; x +

√
y − z2 = t +

√
t2 − 0 = t + |t| = 2t since t ≥ 0⇒

∫
c1
f (x , y , z)ds =∫ 1

0 2t
√

1 + 4t2dt =
[

1
6 (1 + 4t2)3/2

]1
0

= 1
6 (5)3/2 − 1

6 = 1
6 (5
√

5− 1).

C2 : r(t) = i + j + tk, 0 ≤ t ≤ 1⇒ dr
dt = k⇒ |drdt | = 1; x +

√
y − z2 =

1 +
√

1− t2 = 2− t2 ⇒
∫
c2
f (x , y , z)ds =

∫ 1
0 (2− t2)(1)dt =

[2t − 1
3 t

3]10 = 2− 1
3 = 5

3 .

Therefore
∫
c f (x , y , z)ds =

∫
c1
f (x , y , z)ds +

∫
c2
f (x , y , z)ds = 5

6

√
5 + 3

2 .
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Exercises

Exercise 9.

1. Evaluate
∫
C

√
x + 2y ds, where C is

(a) the straight-line segment x = t, y = 4t, from (0, 0) to (1, 4).
(b) C1 ∪ C2;C1 is the line segment from (0, 0) to (1, 0) and C2 is the line

segment from (1, 0) to (1, 2).

2. Evaluate

∫
C

x2

y4/3
ds, where C is the curve x = t2, y = t3, for

1 ≤ t ≤ 2.
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Solution for Exercise 9

1. (a) r(t) = ti + 4tj, 0 ≤ t ≤ 1⇒ dr
dt = i + 4j⇒ | drdt | =

√
17⇒∫

c

√
x + 2y ds =

∫ 1

0

√
t + 2(4t)

√
17 dt =

√
17
∫ 1

0

√
9t dt =

3
√

17
∫ 1

0

√
t dt =

[
2
√

17t2/3
]1

0
= 2
√

17

(b) C1 : r(t) = ti, 0 ≤ t ≤ 1⇒ dr
dt = i⇒ | drdt | = 1;C2 : r(t) = i + tj, 0 ≤

t ≤ 1⇒ dr
dt = j⇒ | drdt | = 1

∫
c

√
x + 2y ds =∫

c1

√
x + 2y ds +

∫
c2

√
x + 2y ds =∫ 1

0

√
t + 2(0)dt +

∫ 2

0

√
1 + 2(t) dt =

∫ 1

0

√
t dt +

∫ 2

0

√
1 + 2t dt =[

2
3 t

2/3
]1

0
+
[

1
3 (1 + 2t)2/3

]2
0

= 2
3 +

(
5
√

5
3 −

1
3

)
= 5

√
5+1
3

2. r(t) = t2i + t3j, 1 ≤ t ≤ 2⇒ dr
dt = 2ti + 3t2j⇒ |drdt | =√

(2t)2 + (3t2)2 = t
√

4 + 9t2 ⇒
∫
c

x2

y4/3 ds =
∫ 2

1
(t2)2

(t3)4/3 ·

t
√

4 + 9t2dt =
∫ 2

1 t
√

4 + 9t2dt =
[

1
27 (4 + 9t2)3/2

]2
1

= 80
√

10−13
√

13
48
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Exercises

Exercise 10.

Evaluate

∫
c
(x +

√
y)ds where C is given in the accompanying figure.
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Solution for Exercise 10

C1 : r(t) = ti + t2j, 0 ≤ t ≤ 1⇒ dr
dt = i + 2tj⇒ |drdt | =

√
1 + 4t2

C2 : r(t) = (1− t)i + (1− t)j, 0 ≤ t ≤ 1⇒ dr
dt = −i− j⇒ |drdt | =

√
2∫

c(x+
√
y)ds =

∫
c1

(x+
√
y)ds+

∫
c2

(x+
√
y)ds =

∫ 1
0 (t+

√
t2)
√

1 + 4t2dt+∫ 1
0 ((1−t)+

√
1− t)

√
2dt =

∫ 1
0 2t
√

1 + 4t2dt+
∫ 1

0 (1−t+
√

1− t)
√

2dt =[
1
6 (1+4t2)3/2

]1
0

+
√

2
[
t− 1

2 t
2− 3

2 (1−t)3/2
]1

0
= 5

√
5−1
6 + 7

√
2

6 = 5
√

5+7
√

2−1
6 .
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Exercises

Exercise 11.

1. Find the area of one side of the ”winding wall” standing orthogonally
on the curve y = x2, 0 ≤ x ≤ 2, and beneath the curve on the surface
f (x , y) = x +

√
y .

2. Find the area of one side of the ”wall” standing orthogonally on the
curve 2x + 3y = 6, 0 ≤ x ≤ 6, and beneath the curve on the surface
f (x , y) = 4 + 3x + 2y .

3. Center of mass of a curved wire : A wire of density
δ(x , y , z) = 15

√
y + 2 lies along the curve

r(t) = (t2 − 1)j + 2tk,−1 ≤ t ≤ 1. Find its center of mass. Then
sketch the curve and center of mass together.
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Solution for Exercise 11

1. y = x2, 0 ≤ x ≤ 2⇒ r(t) = ti + t2j, 0 ≤ t ≤ 2⇒ dr
dt

= i + 2tj⇒ | dr
dt
| =
√

1 + 4t2 ⇒ A =∫
c f (x , y)ds =

∫
c (x +

√
y)ds =

∫ 2
0 (t +

√
t2)
√

1 + 4t2dt =
∫ 2

0 2t
√

1 + 4t2dt =[
1
6

(1 + 4t2)3/2
]2

0
= 17

√
17−1
6

2. 2x + 3y = 6, 0 ≤ x ≤ 6⇒ r(t) = ti + (2− 2
3
t)j, 0 ≤ t ≤ 6⇒ dr

dt
= i− 2

3
j⇒ | dr

dt
| =

√
13
3
⇒ A =

∫
c f (x , y)ds =

∫
c (4 + 3x + 2y)ds =

∫ 6
0 (4 + 3t + 2(2− 2

3
t))
√

13
3

dt =
√

13
3

∫ 6
0 (8 + 5

3
t)dt =

√
13
3

[8t + 5
6
t2]6

0 = 26
√

13

3. r(t) = (t2 − 1)j + 2tk,−1 ≤ t ≤ 1⇒ dr
dt

= 2tj + 2k⇒ | dr
dt
| = 2

√
t2 + 1;M =∫

c δ(x , y , z)ds =
∫ 1
−1(15

√
(t2 − 1) + 2)(2

√
t2 + 1)dt =

∫ 1
−1 30(t2 + 1)dt =[

30
(

t3

3
+ t
) ]1
−1

= 60
(

1
3

+ 1
)

= 80;Mxz =
∫
c yδ(x , y , z)ds =∫ 1

−1(t2 − 1)[30(t2 + 1)]dt =
∫ 1
−1 30(t4 − 1)dt =

[
30
(

t5

5
− t
) ]1
−1

= 60
(

1
5
− 1
)

= −48⇒

y = Mxz
M

= − 48
80

= − 3
5

;Myz =
∫
c xδ(x , y , z)ds =

∫
c 0 δ ds = 0⇒ x = 0; z = 0 by

symmetry (since δ is independent of z) ⇒ (x , y , z) = (0,− 3
5
, 0)
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Exercises

Exercise 12.

1. Mass of wire with variable density : Find the mass of a thin wire
lying along the curve r(t) =

√
2t i +

√
2tj + (4− t2)k, 0 ≤ t ≤ 1, if

the density is

(a) δ = 3t ;
(b) δ = 1.

2. Center of mass of wire with variable density : Find the center of
mass of a thin wire lying along the curve
r(t) = t i + 2tj + (2/3)t3/k, 0 ≤ t ≤ 2, if the density is δ = 3

√
5 + t.
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Solution for Exercise 12

1. r(t) =
√

2ti +
√

2tj + (4− t2)k, 0 ≤ t ≤ 1⇒ dr
dt

=
√

2i +
√

2j− 2tk⇒ | dr
dt
| =√

2 + 2 + 4t2 = 2
√

1 + t2;

(a) M =
∫
c
δ ds =

∫ 1

0
(3t)(

√
1 + t2)dt =

[
2(1 + t2)3/2

]1
0

= 2(23/2 − 1) =

4
√

2− 2
(b) M =

∫
c
δ ds =

∫ 1

0
(1)(2

√
1 + t2)dt =

[
t
√

1 + t2 + ln(t +
√

1 + t2)
]1

0
=[√

2 + ln(1 +
√

2)
]
− (0 + ln 1) =

√
2 + ln(1 +

√
2)

2. r(t) = ti + 2tj + 2
3
t3/2k, 0 ≤ t ≤ 2⇒ dr

dt
= i + 2j + t1/2k⇒ | dr

dt
| =
√

1 + 4 + t =
√

5 + t;M =
∫
c δ ds =

∫ 2
0 (3
√

5 + t)(
√

5 + t)dt =
∫ 2

0 3(5 + t)dt =
[

3
2

(5 + t)2
]2

0
=

3
2

(72 − 52) = 3
2

(24) = 36;Myz =
∫
c xδ ds =

∫ 2
0 t[3(5 + t)]dt =

∫ 2
0 (15t + 3t2)dt =[

15
2
t2 + t3

]2
0

= 30 + 8 = 38;Mxz =
∫
c yδ ds =

∫ 2
0 2t[3(5 + t)]dt = 2

∫ 2
0 (15t + 3t2)dt =

76;Mxy =
∫
c zδ ds =

∫ 2
0

2
3
t3/2[3(5 + t)]dt =

∫ 2
0 (10t3/2 + 2t5/2)dt =

[
4t5/2 + 4

7
t7/2

]2
0

=

4(2)5/2 + 4
7

(2)7/2 = 16
√

2 + 32
7

√
2 = 144

7

√
2⇒ x =

Myz

M
= 38

36
= 19

18
, y = Mxz

M
= 76

36
=

19
9
, andz =

Mxy

M
= 144

√
2

7.36
= 4

7

√
2
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